mirror of https://github.com/fan-ziqi/rl_sar.git
5.0 KiB
5.0 KiB
rl_sar
四足机器人强化学习算法的仿真验证与实物部署。"sar"代表"simulation and real"
准备
拉取代码(同步拉取子模块)
git clone --recursive https://github.com/fan-ziqi/rl_sar.git
如有更新:
git pull
git submodule update --remote --recursive
在任意位置下载并部署libtorch
cd /path/to/your/torchlib
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./
echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc
安装 teleop-twist-keyboard
sudo apt install ros-noetic-teleop-twist-keyboard
依赖
安装yaml-cpp
git clone https://github.com/jbeder/yaml-cpp.git
cd yaml-cpp && mkdir build && cd build
cmake -DYAML_BUILD_SHARED_LIBS=on .. && make
sudo make install
sudo ldconfig
头文件在/usr/local/include,库文件在/usr/local/lib
编译
自定义代码中的以下两个函数,以适配不同的模型:
torch::Tensor forward() override;
torch::Tensor compute_observation() override;
然后到根目录编译
cd ..
catkin build
运行
运行前请将训练好的pt模型文件拷贝到rl_sar/src/rl_sar/models
中
仿真
新建终端,启动gazebo仿真环境
source devel/setup.bash
roslaunch rl_sar start_a1.launch
新建终端,启动控制程序
source devel/setup.bash
rosrun rl_sar rl_sim
新建终端,键盘控制程序
rosrun teleop_twist_keyboard teleop_twist_keyboard.py
实物
Unitree A1
与实物的连接可分为无线与有线形式
- 无线:连接机器人发出的Unitree开头的WIFI (注意:无线连接可能会出现丢包断联甚至失控,请注意安全)
- 有线:用网线连接计算机和机器人的任意网口,配置计算机ip为192.168.123.162,网关255.255.255.0
新建终端,启动控制程序
source devel/setup.bash
rosrun rl_sar rl_real
按下遥控器的R2键让机器人切换到默认站起姿态,按下R1键切换到RL控制模式,任意状态按下L2切换到最初的趴下姿态。左摇杆上下控制x左右控制yaw,右摇杆左右控制y。
Cyberdog1
-
连接机器人
将本地PC连接至铁蛋的USB download type-c 接口(位于中间),等待出现”L4T-README” 弹窗
ping 192.168.55.100 #本地PC被分配的ip ssh mi@192.168.55.1 #登录nx应用板 ,密码123 athena_version -v #核对当前版本>=1.0.0.94
-
进入电机控制模式
修改配置开关,激活用户控制模式,运行用户自己的控制器:
ssh root@192.168.55.233 #登录运动控制板 cd /robot ./initialize.sh #拷贝出厂代码到可读写的开发区(/mnt/UDISK/robot-software),切换到开发者模式,仅需执行一次 vi /mnt/UDISK/robot-software/config/user_code_ctrl_mode.txt #切换mode:1(0:默认模式,1用户代码控制电机模式),重启机器人生效
-
用户电脑侧部署
运行在用户pc侧(linux)难以保证实时lcm通信,仅推荐编译验证和简单的位控测试
ping 192.168.55.233 #通过type c线连接Cyberdog的Download接口后,确认通信正常 ifconfig | grep -B 1 192.168.55.100 | grep "flags"| cut -d ':' -f1 #获取该ip对应网络设备,一般为usb0 sudo ifconfig usb0 multicast #usb0替换为上文获取的168.55.100对应网络设备,并配为多播 sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev usb0 #添加路由表,usb0对应替换
启动控制程序
source devel/setup.bash rosrun rl_sar rl_real
按下键盘上的0键让机器人切换到默认站起姿态,按下P键切换到RL控制模式,任意状态按下1键切换到最初的趴下姿态。WS控制x,AD控制yaw,JL控制y。
-
重启
# 重启运控程序: ssh root@192.168.55.233 "ps | grep -E 'Example_MotorCtrl' | grep -v grep | awk '{print \$1}' | xargs kill -9" #需先于主进程暂停,避免急停 ssh root@192.168.55.233 "ps | grep -E 'manager|ctrl|imu_online' | grep -v grep | awk '{print \$1}' | xargs kill -9" ssh root@192.168.55.233 "export LD_LIBRARY_PATH=/mnt/UDISK/robot-software/build;/mnt/UDISK/manager /mnt/UDISK/ >> /mnt/UDISK/manager_log/manager.log 2>&1 &" # 重启运控板系统: ssh root@192.168.55.233 "reboot"
注:lcm通信若不成功,无法正常激活电机控制模式,log提示:Motor control mode has not been activated successfully
引用
如果您使用此代码或其部分内容,请引用以下内容:
@software{fan-ziqi2024rl_sar,
author = {fan-ziqi},
title = {{rl_sar: Simulation Verification and Physical Deployment of the Quadruped Robot's Reinforcement Learning Algorithm.}},
url = {https://github.com/fan-ziqi/rl_sar},
year = {2024}
}