mirror of https://github.com/fan-ziqi/rl_sar.git
3.9 KiB
3.9 KiB
rl_sar
机器人强化学习算法的仿真验证与实物部署,适配四足机器人、轮足机器人、人形机器人。"sar"代表"simulation and real"
准备
拉取代码
git clone https://github.com/fan-ziqi/rl_sar.git
依赖
本项目依赖ROS-Noetic(Ubuntu20.04)
安装好ros之后安装依赖库
sudo apt install ros-noetic-teleop-twist-keyboard ros-noetic-controller-interface ros-noetic-gazebo-ros-control ros-noetic-joint-state-controller ros-noetic-effort-controllers ros-noetic-joint-trajectory-controller
在任意位置下载并部署libtorch
cd /path/to/your/torchlib
wget https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-2.0.1%2Bcpu.zip
unzip libtorch-cxx11-abi-shared-with-deps-2.0.1+cpu.zip -d ./
echo 'export Torch_DIR=/path/to/your/torchlib' >> ~/.bashrc
安装yaml-cpp
git clone https://github.com/jbeder/yaml-cpp.git
cd yaml-cpp && mkdir build && cd build
cmake -DYAML_BUILD_SHARED_LIBS=on .. && make
sudo make install
sudo ldconfig
安装lcm
git clone https://github.com/lcm-proj/lcm.git
cd lcm && mkdir build && cd build
cmake .. && make
sudo make install
sudo ldconfig
编译
自定义代码中的以下两个函数,以适配不同的模型:
torch::Tensor forward() override;
torch::Tensor compute_observation() override;
然后到根目录编译
cd ..
catkin build
运行
运行前请将训练好的pt模型文件拷贝到rl_sar/src/rl_sar/models/YOUR_ROBOT_NAME
中,并配置config.yaml
中的参数。
仿真
新建终端,启动gazebo仿真环境
source devel/setup.bash
roslaunch rl_sar gazebo_<ROBOT>.launch
其中 <ROBOT> 可以是 a1
或 gr1t1
.
按下键盘上的0键让机器人切换到默认站起姿态,按下P键切换到RL控制模式,任意状态按下1键切换到最初的趴下姿态。WS控制x,AD控制yaw,JL控制y。
按R重置Gazebo仿真环境。
实物
Unitree A1
与Unitree A1连接可以使用无线与有线两种方式
- 无线:连接机器人发出的Unitree开头的WIFI (注意:无线连接可能会出现丢包断联甚至失控,请注意安全)
- 有线:用网线连接计算机和机器人的任意网口,配置计算机ip为192.168.123.162,网关255.255.255.0
新建终端,启动控制程序
source devel/setup.bash
rosrun rl_sar rl_real_a1
按下遥控器的R2键让机器人切换到默认站起姿态,按下R1键切换到RL控制模式,任意状态按下L2切换到最初的趴下姿态。左摇杆上下控制x左右控制yaw,右摇杆左右控制y。
OR 按下键盘上的0键让机器人切换到默认站起姿态,按下P键切换到RL控制模式,任意状态按下1键切换到最初的趴下姿态。WS控制x,AD控制yaw,JL控制y。
添加你的机器人
下文中将ROBOT代表机器人名称
- 在robots文件夹中创建名为ROBOT_description的模型包,将模型的urdf放到文件夹中的urdf路径下并命名为ROBOT.urdf,在模型文件中的config文件夹中创建命名空间为ROBOT_gazebo的关节配置文件
- 将模型文件放到models/ROBOT中
- 在rl_sar/config.yaml中添加一个新的字段,命名为ROBOT,更改其中参数,如将model_name改为上一步的模型文件名
- 在rl_sar/launch文件夹中添加一个新的launch文件,请参考其他launch文件自行修改
- 修改rl_xxx.cpp中的ROBOT_NAME为ROBOT
- 编译运行
参考
引用
如果您使用此代码或其部分内容,请引用以下内容:
@software{fan-ziqi2024rl_sar,
author = {fan-ziqi},
title = {{rl_sar: Simulation Verification and Physical Deployment of Robot Reinforcement Learning Algorithm.}},
url = {https://github.com/fan-ziqi/rl_sar},
year = {2024}
}