unitree_rl_gym/README.md

163 lines
7.4 KiB
Markdown
Raw Permalink Normal View History

2024-12-25 12:07:22 +08:00
<div align="center">
<h1 align="center">Unitree RL GYM</h1>
<p align="center">
<span> 🌎English </span> | <a href="README_zh.md"> 🇨🇳中文 </a>
</p>
</div>
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
<p align="center">
<strong>This is a repository for reinforcement learning implementation based on Unitree robots, supporting Unitree Go2, H1, H1_2, and G1.</strong>
</p>
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
<div align="center">
| <div align="center"> Isaac Gym </div> | <div align="center"> Mujoco </div> | <div align="center"> Physical </div> |
2024-12-11 20:30:19 +08:00
|--- | --- | --- |
| [<img src="https://oss-global-cdn.unitree.com/static/32f06dc9dfe4452dac300dda45e86b34.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/5bbc5ab1d551407080ca9d58d7bec1c8.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/244cd5c4f823495fbfb67ef08f56aa33.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/5aa48535ffd641e2932c0ba45c8e7854.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/78c61459d3ab41448cfdb31f6a537e8b.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/0818dcf7a6874b92997354d628adcacd.mp4) |
2024-12-25 12:07:22 +08:00
</div>
---
## 📦 Installation and Configuration
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
Please refer to [setup.md](/doc/setup_en.md) for installation and configuration steps.
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
## 🔁 Process Overview
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
The basic workflow for using reinforcement learning to achieve motion control is:
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
`Train``Play``Sim2Sim``Sim2Real`
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
- **Train**: Use the Gym simulation environment to let the robot interact with the environment and find a policy that maximizes the designed rewards. Real-time visualization during training is not recommended to avoid reduced efficiency.
- **Play**: Use the Play command to verify the trained policy and ensure it meets expectations.
- **Sim2Sim**: Deploy the Gym-trained policy to other simulators to ensure its not overly specific to Gym characteristics.
- **Sim2Real**: Deploy the policy to a physical robot to achieve motion control.
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
## 🛠️ User Guide
2024-07-25 10:29:43 +08:00
2024-12-25 12:07:22 +08:00
### 1. Training
2024-07-25 10:29:43 +08:00
2024-12-25 12:07:22 +08:00
Run the following command to start training:
2024-12-06 16:05:29 +08:00
2024-12-25 12:07:22 +08:00
```bash
python legged_gym/scripts/train.py --task=xxx
```
2024-12-06 16:05:29 +08:00
2024-12-25 12:07:22 +08:00
#### ⚙️ Parameter Description
- `--task`: Required parameter; values can be (go2, g1, h1, h1_2).
- `--headless`: Defaults to starting with a graphical interface; set to true for headless mode (higher efficiency).
- `--resume`: Resume training from a checkpoint in the logs.
- `--experiment_name`: Name of the experiment to run/load.
- `--run_name`: Name of the run to execute/load.
- `--load_run`: Name of the run to load; defaults to the latest run.
- `--checkpoint`: Checkpoint number to load; defaults to the latest file.
- `--num_envs`: Number of environments for parallel training.
- `--seed`: Random seed.
- `--max_iterations`: Maximum number of training iterations.
- `--sim_device`: Simulation computation device; specify CPU as `--sim_device=cpu`.
- `--rl_device`: Reinforcement learning computation device; specify CPU as `--rl_device=cpu`.
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
**Default Training Result Directory**: `logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt`
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
---
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
### 2. Play
To visualize the training results in Gym, run the following command:
```bash
python legged_gym/scripts/play.py --task=xxx
```
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
**Description**:
- Plays parameters are the same as Trains.
- By default, it loads the latest model from the experiment folders last run.
- You can specify other models using `load_run` and `checkpoint`.
#### 💾 Export Network
Play exports the Actor network, saving it in `logs/{experiment_name}/exported/policies`:
- Standard networks (MLP) are exported as `policy_1.pt`.
- RNN networks are exported as `policy_lstm_1.pt`.
### Play Results
2024-07-18 14:42:14 +08:00
2024-12-06 16:05:29 +08:00
| Go2 | G1 | H1 | H1_2 |
|--- | --- | --- | --- |
2024-12-11 20:30:19 +08:00
| [![go2](https://oss-global-cdn.unitree.com/static/ba006789e0af4fe3867255f507032cd7.GIF)](https://oss-global-cdn.unitree.com/static/d2e8da875473457c8d5d69c3de58b24d.mp4) | [![g1](https://oss-global-cdn.unitree.com/static/32f06dc9dfe4452dac300dda45e86b34.GIF)](https://oss-global-cdn.unitree.com/static/5bbc5ab1d551407080ca9d58d7bec1c8.mp4) | [![h1](https://oss-global-cdn.unitree.com/static/fa04e73966934efa9838e9c389f48fa2.GIF)](https://oss-global-cdn.unitree.com/static/522128f4640c4f348296d2761a33bf98.mp4) |[![h1_2](https://oss-global-cdn.unitree.com/static/83ed59ca0dab4a51906aff1f93428650.GIF)](https://oss-global-cdn.unitree.com/static/15fa46984f2343cb83342fd39f5ab7b2.mp4)|
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
---
2024-07-18 14:42:14 +08:00
2024-12-25 12:07:22 +08:00
### 3. Sim2Sim (Mujoco)
2024-11-29 17:00:30 +08:00
2024-12-25 12:07:22 +08:00
Run Sim2Sim in the Mujoco simulator:
2024-11-29 17:00:30 +08:00
```bash
2024-12-06 16:05:29 +08:00
python deploy/deploy_mujoco/deploy_mujoco.py {config_name}
2024-11-29 17:00:30 +08:00
```
2024-12-25 12:07:22 +08:00
#### Parameter Description
- `config_name`: Configuration file; default search path is `deploy/deploy_mujoco/configs/`.
2024-11-29 17:00:30 +08:00
2024-12-25 12:07:22 +08:00
#### Example: Running G1
2024-11-29 17:00:30 +08:00
```bash
2024-12-06 16:05:29 +08:00
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml
2024-11-29 17:00:30 +08:00
```
2024-12-25 12:07:22 +08:00
#### ➡️ Replace Network Model
The default model is located at `deploy/pre_train/{robot}/motion.pt`; custom-trained models are saved in `logs/g1/exported/policies/policy_lstm_1.pt`. Update the `policy_path` in the YAML configuration file accordingly.
#### Simulation Results
2024-11-29 17:00:30 +08:00
2024-12-06 16:05:29 +08:00
| G1 | H1 | H1_2 |
|--- | --- | --- |
2024-12-11 20:30:19 +08:00
| [![mujoco_g1](https://oss-global-cdn.unitree.com/static/244cd5c4f823495fbfb67ef08f56aa33.GIF)](https://oss-global-cdn.unitree.com/static/5aa48535ffd641e2932c0ba45c8e7854.mp4) | [![mujoco_h1](https://oss-global-cdn.unitree.com/static/7ab4e8392e794e01b975efa205ef491e.GIF)](https://oss-global-cdn.unitree.com/static/8934052becd84d08bc8c18c95849cf32.mp4) | [![mujoco_h1_2](https://oss-global-cdn.unitree.com/static/2905e2fe9b3340159d749d5e0bc95cc4.GIF)](https://oss-global-cdn.unitree.com/static/ee7ee85bd6d249989a905c55c7a9d305.mp4) |
2024-11-29 17:00:30 +08:00
2024-12-25 12:07:22 +08:00
---
### 4. Sim2Real (Physical Deployment)
Before deploying to the physical robot, ensure its in debug mode. Detailed steps can be found in the [Physical Deployment Guide](deploy/deploy_real/README.md):
```bash
python deploy/deploy_real/deploy_real.py {net_interface} {config_name}
```
#### Parameter Description
- `net_interface`: Network card name connected to the robot, e.g., `enp3s0`.
- `config_name`: Configuration file located in `deploy/deploy_real/configs/`, e.g., `g1.yaml`, `h1.yaml`, `h1_2.yaml`.
#### Deployment Results
| G1 | H1 | H1_2 |
|--- | --- | --- |
| [![real_g1](https://oss-global-cdn.unitree.com/static/78c61459d3ab41448cfdb31f6a537e8b.GIF)](https://oss-global-cdn.unitree.com/static/0818dcf7a6874b92997354d628adcacd.mp4) | [![real_h1](https://oss-global-cdn.unitree.com/static/fa07b2fd2ad64bb08e6b624d39336245.GIF)](https://oss-global-cdn.unitree.com/static/ea0084038d384e3eaa73b961f33e6210.mp4) | [![real_h1_2](https://oss-global-cdn.unitree.com/static/a88915e3523546128a79520aa3e20979.GIF)](https://oss-global-cdn.unitree.com/static/12d041a7906e489fae79d55b091a63dd.mp4) |
---
## 🎉 Acknowledgments
This repository is built upon the support and contributions of the following open-source projects. Special thanks to:
- [legged\_gym](https://github.com/leggedrobotics/legged_gym): The foundation for training and running codes.
- [rsl\_rl](https://github.com/leggedrobotics/rsl_rl.git): Reinforcement learning algorithm implementation.
- [mujoco](https://github.com/google-deepmind/mujoco.git): Providing powerful simulation functionalities.
- [unitree\_sdk2\_python](https://github.com/unitreerobotics/unitree_sdk2_python.git): Hardware communication interface for physical deployment.
---
## 🔖 License
This project is licensed under the [BSD 3-Clause License](./LICENSE):
1. The original copyright notice must be retained.
2. The project name or organization name may not be used for promotion.
3. Any modifications must be disclosed.
For details, please read the full [LICENSE file](./LICENSE).