124 lines
5.4 KiB
Python
124 lines
5.4 KiB
Python
|
|
||
|
from legged_gym.envs.base.legged_robot import LeggedRobot
|
||
|
|
||
|
from isaacgym.torch_utils import *
|
||
|
from isaacgym import gymtorch, gymapi, gymutil
|
||
|
import torch
|
||
|
|
||
|
class H1Robot(LeggedRobot):
|
||
|
|
||
|
def _get_noise_scale_vec(self, cfg):
|
||
|
""" Sets a vector used to scale the noise added to the observations.
|
||
|
[NOTE]: Must be adapted when changing the observations structure
|
||
|
|
||
|
Args:
|
||
|
cfg (Dict): Environment config file
|
||
|
|
||
|
Returns:
|
||
|
[torch.Tensor]: Vector of scales used to multiply a uniform distribution in [-1, 1]
|
||
|
"""
|
||
|
noise_vec = torch.zeros_like(self.obs_buf[0])
|
||
|
self.add_noise = self.cfg.noise.add_noise
|
||
|
noise_scales = self.cfg.noise.noise_scales
|
||
|
noise_level = self.cfg.noise.noise_level
|
||
|
noise_vec[:3] = noise_scales.ang_vel * noise_level * self.obs_scales.ang_vel
|
||
|
noise_vec[3:6] = noise_scales.gravity * noise_level
|
||
|
noise_vec[6:9] = 0. # commands
|
||
|
noise_vec[9:9+self.num_actions] = noise_scales.dof_pos * noise_level * self.obs_scales.dof_pos
|
||
|
noise_vec[9+self.num_actions:9+2*self.num_actions] = noise_scales.dof_vel * noise_level * self.obs_scales.dof_vel
|
||
|
noise_vec[9+2*self.num_actions:9+3*self.num_actions] = 0. # previous actions
|
||
|
noise_vec[9+3*self.num_actions:9+3*self.num_actions+2] = 0. # sin/cos phase
|
||
|
|
||
|
return noise_vec
|
||
|
|
||
|
def _init_foot(self):
|
||
|
self.feet_num = len(self.feet_indices)
|
||
|
|
||
|
rigid_body_state = self.gym.acquire_rigid_body_state_tensor(self.sim)
|
||
|
self.rigid_body_states = gymtorch.wrap_tensor(rigid_body_state)
|
||
|
self.rigid_body_states_view = self.rigid_body_states.view(self.num_envs, -1, 13)
|
||
|
self.feet_state = self.rigid_body_states_view[:, self.feet_indices, :]
|
||
|
self.feet_pos = self.feet_state[:, :, :3]
|
||
|
self.feet_vel = self.feet_state[:, :, 7:10]
|
||
|
|
||
|
def _init_buffers(self):
|
||
|
super()._init_buffers()
|
||
|
self._init_foot()
|
||
|
|
||
|
def update_feet_state(self):
|
||
|
self.gym.refresh_rigid_body_state_tensor(self.sim)
|
||
|
|
||
|
self.feet_state = self.rigid_body_states_view[:, self.feet_indices, :]
|
||
|
self.feet_pos = self.feet_state[:, :, :3]
|
||
|
self.feet_vel = self.feet_state[:, :, 7:10]
|
||
|
|
||
|
def _post_physics_step_callback(self):
|
||
|
self.update_feet_state()
|
||
|
|
||
|
period = 0.8
|
||
|
offset = 0.5
|
||
|
self.phase = (self.episode_length_buf * self.dt) % period / period
|
||
|
self.phase_left = self.phase
|
||
|
self.phase_right = (self.phase + offset) % 1
|
||
|
self.leg_phase = torch.cat([self.phase_left.unsqueeze(1), self.phase_right.unsqueeze(1)], dim=-1)
|
||
|
|
||
|
return super()._post_physics_step_callback()
|
||
|
|
||
|
|
||
|
def compute_observations(self):
|
||
|
""" Computes observations
|
||
|
"""
|
||
|
sin_phase = torch.sin(2 * np.pi * self.phase ).unsqueeze(1)
|
||
|
cos_phase = torch.cos(2 * np.pi * self.phase ).unsqueeze(1)
|
||
|
self.obs_buf = torch.cat(( self.base_ang_vel * self.obs_scales.ang_vel,
|
||
|
self.projected_gravity,
|
||
|
self.commands[:, :3] * self.commands_scale,
|
||
|
(self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos,
|
||
|
self.dof_vel * self.obs_scales.dof_vel,
|
||
|
self.actions,
|
||
|
sin_phase,
|
||
|
cos_phase
|
||
|
),dim=-1)
|
||
|
self.privileged_obs_buf = torch.cat(( self.base_lin_vel * self.obs_scales.lin_vel,
|
||
|
self.base_ang_vel * self.obs_scales.ang_vel,
|
||
|
self.projected_gravity,
|
||
|
self.commands[:, :3] * self.commands_scale,
|
||
|
(self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos,
|
||
|
self.dof_vel * self.obs_scales.dof_vel,
|
||
|
self.actions,
|
||
|
sin_phase,
|
||
|
cos_phase
|
||
|
),dim=-1)
|
||
|
# add perceptive inputs if not blind
|
||
|
# add noise if needed
|
||
|
if self.add_noise:
|
||
|
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
|
||
|
|
||
|
|
||
|
def _reward_contact(self):
|
||
|
res = torch.zeros(self.num_envs, dtype=torch.float, device=self.device)
|
||
|
for i in range(self.feet_num):
|
||
|
is_stance = self.leg_phase[:, i] < 0.55
|
||
|
contact = self.contact_forces[:, self.feet_indices[i], 2] > 1
|
||
|
res += ~(contact ^ is_stance)
|
||
|
return res
|
||
|
|
||
|
def _reward_feet_swing_height(self):
|
||
|
contact = torch.norm(self.contact_forces[:, self.feet_indices, :3], dim=2) > 1.
|
||
|
pos_error = torch.square(self.feet_pos[:, :, 2] - 0.08) * ~contact
|
||
|
return torch.sum(pos_error, dim=(1))
|
||
|
|
||
|
def _reward_alive(self):
|
||
|
# Reward for staying alive
|
||
|
return 1.0
|
||
|
|
||
|
def _reward_contact_no_vel(self):
|
||
|
# Penalize contact with no velocity
|
||
|
contact = torch.norm(self.contact_forces[:, self.feet_indices, :3], dim=2) > 1.
|
||
|
contact_feet_vel = self.feet_vel * contact.unsqueeze(-1)
|
||
|
penalize = torch.square(contact_feet_vel[:, :, :3])
|
||
|
return torch.sum(penalize, dim=(1,2))
|
||
|
|
||
|
def _reward_hip_pos(self):
|
||
|
return torch.sum(torch.square(self.dof_pos[:,[0,1,5,6]]), dim=1)
|
||
|
|