unitree_rl_gym/legged_gym/utils/task_registry.py

129 lines
5.8 KiB
Python
Raw Permalink Normal View History

2023-10-11 15:38:49 +08:00
import os
from datetime import datetime
from typing import Tuple
import torch
import numpy as np
import sys
from rsl_rl.env import VecEnv
from rsl_rl.runners import OnPolicyRunner
from legged_gym import LEGGED_GYM_ROOT_DIR, LEGGED_GYM_ENVS_DIR
from .helpers import get_args, update_cfg_from_args, class_to_dict, get_load_path, set_seed, parse_sim_params
from legged_gym.envs.base.legged_robot_config import LeggedRobotCfg, LeggedRobotCfgPPO
class TaskRegistry():
def __init__(self):
self.task_classes = {}
self.env_cfgs = {}
self.train_cfgs = {}
def register(self, name: str, task_class: VecEnv, env_cfg: LeggedRobotCfg, train_cfg: LeggedRobotCfgPPO):
self.task_classes[name] = task_class
self.env_cfgs[name] = env_cfg
self.train_cfgs[name] = train_cfg
def get_task_class(self, name: str) -> VecEnv:
return self.task_classes[name]
def get_cfgs(self, name) -> Tuple[LeggedRobotCfg, LeggedRobotCfgPPO]:
train_cfg = self.train_cfgs[name]
env_cfg = self.env_cfgs[name]
# copy seed
env_cfg.seed = train_cfg.seed
return env_cfg, train_cfg
def make_env(self, name, args=None, env_cfg=None) -> Tuple[VecEnv, LeggedRobotCfg]:
""" Creates an environment either from a registered namme or from the provided config file.
Args:
name (string): Name of a registered env.
args (Args, optional): Isaac Gym comand line arguments. If None get_args() will be called. Defaults to None.
env_cfg (Dict, optional): Environment config file used to override the registered config. Defaults to None.
Raises:
ValueError: Error if no registered env corresponds to 'name'
Returns:
isaacgym.VecTaskPython: The created environment
Dict: the corresponding config file
"""
# if no args passed get command line arguments
if args is None:
args = get_args()
# check if there is a registered env with that name
if name in self.task_classes:
task_class = self.get_task_class(name)
else:
raise ValueError(f"Task with name: {name} was not registered")
if env_cfg is None:
# load config files
env_cfg, _ = self.get_cfgs(name)
# override cfg from args (if specified)
env_cfg, _ = update_cfg_from_args(env_cfg, None, args)
set_seed(env_cfg.seed)
# parse sim params (convert to dict first)
sim_params = {"sim": class_to_dict(env_cfg.sim)}
sim_params = parse_sim_params(args, sim_params)
env = task_class( cfg=env_cfg,
sim_params=sim_params,
physics_engine=args.physics_engine,
sim_device=args.sim_device,
headless=args.headless)
return env, env_cfg
def make_alg_runner(self, env, name=None, args=None, train_cfg=None, log_root="default") -> Tuple[OnPolicyRunner, LeggedRobotCfgPPO]:
""" Creates the training algorithm either from a registered namme or from the provided config file.
Args:
env (isaacgym.VecTaskPython): The environment to train (TODO: remove from within the algorithm)
name (string, optional): Name of a registered env. If None, the config file will be used instead. Defaults to None.
args (Args, optional): Isaac Gym comand line arguments. If None get_args() will be called. Defaults to None.
train_cfg (Dict, optional): Training config file. If None 'name' will be used to get the config file. Defaults to None.
log_root (str, optional): Logging directory for Tensorboard. Set to 'None' to avoid logging (at test time for example).
Logs will be saved in <log_root>/<date_time>_<run_name>. Defaults to "default"=<path_to_LEGGED_GYM>/logs/<experiment_name>.
Raises:
ValueError: Error if neither 'name' or 'train_cfg' are provided
Warning: If both 'name' or 'train_cfg' are provided 'name' is ignored
Returns:
PPO: The created algorithm
Dict: the corresponding config file
"""
# if no args passed get command line arguments
if args is None:
args = get_args()
# if config files are passed use them, otherwise load from the name
if train_cfg is None:
if name is None:
raise ValueError("Either 'name' or 'train_cfg' must be not None")
# load config files
_, train_cfg = self.get_cfgs(name)
else:
if name is not None:
print(f"'train_cfg' provided -> Ignoring 'name={name}'")
# override cfg from args (if specified)
_, train_cfg = update_cfg_from_args(None, train_cfg, args)
if log_root=="default":
log_root = os.path.join(LEGGED_GYM_ROOT_DIR, 'logs', train_cfg.runner.experiment_name)
log_dir = os.path.join(log_root, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + train_cfg.runner.run_name)
elif log_root is None:
log_dir = None
else:
log_dir = os.path.join(log_root, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + train_cfg.runner.run_name)
train_cfg_dict = class_to_dict(train_cfg)
runner = OnPolicyRunner(env, train_cfg_dict, log_dir, device=args.rl_device)
#save resume path before creating a new log_dir
resume = train_cfg.runner.resume
if resume:
# load previously trained model
resume_path = get_load_path(log_root, load_run=train_cfg.runner.load_run, checkpoint=train_cfg.runner.checkpoint)
print(f"Loading model from: {resume_path}")
runner.load(resume_path)
return runner, train_cfg
# make global task registry
task_registry = TaskRegistry()