26 lines
758 B
Python
26 lines
758 B
Python
|
import torch
|
||
|
from torch import Tensor
|
||
|
import numpy as np
|
||
|
from isaacgym.torch_utils import quat_apply, normalize
|
||
|
from typing import Tuple
|
||
|
|
||
|
# @ torch.jit.script
|
||
|
def quat_apply_yaw(quat, vec):
|
||
|
quat_yaw = quat.clone().view(-1, 4)
|
||
|
quat_yaw[:, :2] = 0.
|
||
|
quat_yaw = normalize(quat_yaw)
|
||
|
return quat_apply(quat_yaw, vec)
|
||
|
|
||
|
# @ torch.jit.script
|
||
|
def wrap_to_pi(angles):
|
||
|
angles %= 2*np.pi
|
||
|
angles -= 2*np.pi * (angles > np.pi)
|
||
|
return angles
|
||
|
|
||
|
# @ torch.jit.script
|
||
|
def torch_rand_sqrt_float(lower, upper, shape, device):
|
||
|
# type: (float, float, Tuple[int, int], str) -> Tensor
|
||
|
r = 2*torch.rand(*shape, device=device) - 1
|
||
|
r = torch.where(r<0., -torch.sqrt(-r), torch.sqrt(r))
|
||
|
r = (r + 1.) / 2.
|
||
|
return (upper - lower) * r + lower
|