unitree_rl_gym/legged_gym/envs/h1/h1_env.py

124 lines
5.4 KiB
Python
Raw Normal View History

2024-11-29 16:35:30 +08:00
from legged_gym.envs.base.legged_robot import LeggedRobot
from isaacgym.torch_utils import *
from isaacgym import gymtorch, gymapi, gymutil
import torch
class H1Robot(LeggedRobot):
def _get_noise_scale_vec(self, cfg):
""" Sets a vector used to scale the noise added to the observations.
[NOTE]: Must be adapted when changing the observations structure
Args:
cfg (Dict): Environment config file
Returns:
[torch.Tensor]: Vector of scales used to multiply a uniform distribution in [-1, 1]
"""
noise_vec = torch.zeros_like(self.obs_buf[0])
self.add_noise = self.cfg.noise.add_noise
noise_scales = self.cfg.noise.noise_scales
noise_level = self.cfg.noise.noise_level
noise_vec[:3] = noise_scales.ang_vel * noise_level * self.obs_scales.ang_vel
noise_vec[3:6] = noise_scales.gravity * noise_level
noise_vec[6:9] = 0. # commands
noise_vec[9:9+self.num_actions] = noise_scales.dof_pos * noise_level * self.obs_scales.dof_pos
noise_vec[9+self.num_actions:9+2*self.num_actions] = noise_scales.dof_vel * noise_level * self.obs_scales.dof_vel
noise_vec[9+2*self.num_actions:9+3*self.num_actions] = 0. # previous actions
noise_vec[9+3*self.num_actions:9+3*self.num_actions+2] = 0. # sin/cos phase
return noise_vec
def _init_foot(self):
self.feet_num = len(self.feet_indices)
rigid_body_state = self.gym.acquire_rigid_body_state_tensor(self.sim)
self.rigid_body_states = gymtorch.wrap_tensor(rigid_body_state)
self.rigid_body_states_view = self.rigid_body_states.view(self.num_envs, -1, 13)
self.feet_state = self.rigid_body_states_view[:, self.feet_indices, :]
self.feet_pos = self.feet_state[:, :, :3]
self.feet_vel = self.feet_state[:, :, 7:10]
def _init_buffers(self):
super()._init_buffers()
self._init_foot()
def update_feet_state(self):
self.gym.refresh_rigid_body_state_tensor(self.sim)
self.feet_state = self.rigid_body_states_view[:, self.feet_indices, :]
self.feet_pos = self.feet_state[:, :, :3]
self.feet_vel = self.feet_state[:, :, 7:10]
def _post_physics_step_callback(self):
self.update_feet_state()
period = 0.8
offset = 0.5
self.phase = (self.episode_length_buf * self.dt) % period / period
self.phase_left = self.phase
self.phase_right = (self.phase + offset) % 1
self.leg_phase = torch.cat([self.phase_left.unsqueeze(1), self.phase_right.unsqueeze(1)], dim=-1)
return super()._post_physics_step_callback()
def compute_observations(self):
""" Computes observations
"""
sin_phase = torch.sin(2 * np.pi * self.phase ).unsqueeze(1)
cos_phase = torch.cos(2 * np.pi * self.phase ).unsqueeze(1)
self.obs_buf = torch.cat(( self.base_ang_vel * self.obs_scales.ang_vel,
self.projected_gravity,
self.commands[:, :3] * self.commands_scale,
(self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos,
self.dof_vel * self.obs_scales.dof_vel,
self.actions,
sin_phase,
cos_phase
),dim=-1)
self.privileged_obs_buf = torch.cat(( self.base_lin_vel * self.obs_scales.lin_vel,
self.base_ang_vel * self.obs_scales.ang_vel,
self.projected_gravity,
self.commands[:, :3] * self.commands_scale,
(self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos,
self.dof_vel * self.obs_scales.dof_vel,
self.actions,
sin_phase,
cos_phase
),dim=-1)
# add perceptive inputs if not blind
# add noise if needed
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
def _reward_contact(self):
res = torch.zeros(self.num_envs, dtype=torch.float, device=self.device)
for i in range(self.feet_num):
is_stance = self.leg_phase[:, i] < 0.55
contact = self.contact_forces[:, self.feet_indices[i], 2] > 1
res += ~(contact ^ is_stance)
return res
def _reward_feet_swing_height(self):
contact = torch.norm(self.contact_forces[:, self.feet_indices, :3], dim=2) > 1.
pos_error = torch.square(self.feet_pos[:, :, 2] - 0.08) * ~contact
return torch.sum(pos_error, dim=(1))
def _reward_alive(self):
# Reward for staying alive
return 1.0
def _reward_contact_no_vel(self):
# Penalize contact with no velocity
contact = torch.norm(self.contact_forces[:, self.feet_indices, :3], dim=2) > 1.
contact_feet_vel = self.feet_vel * contact.unsqueeze(-1)
penalize = torch.square(contact_feet_vel[:, :, :3])
return torch.sum(penalize, dim=(1,2))
def _reward_hip_pos(self):
return torch.sum(torch.square(self.dof_pos[:,[0,1,5,6]]), dim=1)