unitree_rl_gym/legged_gym/envs/base/legged_robot.py

718 lines
36 KiB
Python
Raw Normal View History

2023-10-11 15:38:49 +08:00
from legged_gym import LEGGED_GYM_ROOT_DIR, envs
2024-01-12 15:41:58 +08:00
import time
2023-10-11 15:38:49 +08:00
from warnings import WarningMessage
import numpy as np
import os
from isaacgym.torch_utils import *
from isaacgym import gymtorch, gymapi, gymutil
import torch
from torch import Tensor
from typing import Tuple, Dict
from legged_gym import LEGGED_GYM_ROOT_DIR
from legged_gym.envs.base.base_task import BaseTask
2024-01-12 16:05:39 +08:00
from legged_gym.utils.math import wrap_to_pi
from legged_gym.utils.isaacgym_utils import get_euler_xyz as get_euler_xyz_in_tensor
2023-10-11 15:38:49 +08:00
from legged_gym.utils.helpers import class_to_dict
from .legged_robot_config import LeggedRobotCfg
class LeggedRobot(BaseTask):
def __init__(self, cfg: LeggedRobotCfg, sim_params, physics_engine, sim_device, headless):
""" Parses the provided config file,
calls create_sim() (which creates, simulation and environments),
initilizes pytorch buffers used during training
Args:
cfg (Dict): Environment config file
sim_params (gymapi.SimParams): simulation parameters
physics_engine (gymapi.SimType): gymapi.SIM_PHYSX (must be PhysX)
device_type (string): 'cuda' or 'cpu'
device_id (int): 0, 1, ...
headless (bool): Run without rendering if True
"""
self.cfg = cfg
self.sim_params = sim_params
self.height_samples = None
self.debug_viz = False
self.init_done = False
self._parse_cfg(self.cfg)
super().__init__(self.cfg, sim_params, physics_engine, sim_device, headless)
if not self.headless:
self.set_camera(self.cfg.viewer.pos, self.cfg.viewer.lookat)
self._init_buffers()
self._prepare_reward_function()
self.init_done = True
def step(self, actions):
""" Apply actions, simulate, call self.post_physics_step()
Args:
actions (torch.Tensor): Tensor of shape (num_envs, num_actions_per_env)
"""
clip_actions = self.cfg.normalization.clip_actions
self.actions = torch.clip(actions, -clip_actions, clip_actions).to(self.device)
# step physics and render each frame
self.render()
for _ in range(self.cfg.control.decimation):
self.torques = self._compute_torques(self.actions).view(self.torques.shape)
self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(self.torques))
self.gym.simulate(self.sim)
2024-01-12 15:41:58 +08:00
if self.cfg.env.test:
elapsed_time = self.gym.get_elapsed_time(self.sim)
sim_time = self.gym.get_sim_time(self.sim)
if sim_time-elapsed_time>0:
time.sleep(sim_time-elapsed_time)
2023-10-11 15:38:49 +08:00
if self.device == 'cpu':
self.gym.fetch_results(self.sim, True)
self.gym.refresh_dof_state_tensor(self.sim)
self.post_physics_step()
# return clipped obs, clipped states (None), rewards, dones and infos
clip_obs = self.cfg.normalization.clip_observations
self.obs_buf = torch.clip(self.obs_buf, -clip_obs, clip_obs)
if self.privileged_obs_buf is not None:
self.privileged_obs_buf = torch.clip(self.privileged_obs_buf, -clip_obs, clip_obs)
return self.obs_buf, self.privileged_obs_buf, self.rew_buf, self.reset_buf, self.extras
def post_physics_step(self):
""" check terminations, compute observations and rewards
calls self._post_physics_step_callback() for common computations
calls self._draw_debug_vis() if needed
"""
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
self.episode_length_buf += 1
self.common_step_counter += 1
# prepare quantities
self.base_pos[:] = self.root_states[:, 0:3]
self.base_quat[:] = self.root_states[:, 3:7]
2024-01-12 16:05:39 +08:00
self.rpy[:] = get_euler_xyz_in_tensor(self.base_quat[:])
2023-10-11 15:38:49 +08:00
self.base_lin_vel[:] = quat_rotate_inverse(self.base_quat, self.root_states[:, 7:10])
self.base_ang_vel[:] = quat_rotate_inverse(self.base_quat, self.root_states[:, 10:13])
self.projected_gravity[:] = quat_rotate_inverse(self.base_quat, self.gravity_vec)
self._post_physics_step_callback()
# compute observations, rewards, resets, ...
self.check_termination()
self.compute_reward()
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
self.reset_idx(env_ids)
self.compute_observations() # in some cases a simulation step might be required to refresh some obs (for example body positions)
self.last_actions[:] = self.actions[:]
self.last_dof_vel[:] = self.dof_vel[:]
self.last_root_vel[:] = self.root_states[:, 7:13]
def check_termination(self):
""" Check if environments need to be reset
"""
self.reset_buf = torch.any(torch.norm(self.contact_forces[:, self.termination_contact_indices, :], dim=-1) > 1., dim=1)
2024-01-12 15:41:58 +08:00
self.reset_buf |= torch.logical_or(torch.abs(self.rpy[:,1])>1.0, torch.abs(self.rpy[:,0])>0.8)
2023-10-11 15:38:49 +08:00
self.time_out_buf = self.episode_length_buf > self.max_episode_length # no terminal reward for time-outs
self.reset_buf |= self.time_out_buf
def reset_idx(self, env_ids):
""" Reset some environments.
Calls self._reset_dofs(env_ids), self._reset_root_states(env_ids), and self._resample_commands(env_ids)
[Optional] calls self._update_terrain_curriculum(env_ids), self.update_command_curriculum(env_ids) and
Logs episode info
Resets some buffers
Args:
env_ids (list[int]): List of environment ids which must be reset
"""
if len(env_ids) == 0:
return
# reset robot states
self._reset_dofs(env_ids)
self._reset_root_states(env_ids)
self._resample_commands(env_ids)
# reset buffers
self.last_actions[env_ids] = 0.
self.last_dof_vel[env_ids] = 0.
self.feet_air_time[env_ids] = 0.
self.episode_length_buf[env_ids] = 0
self.reset_buf[env_ids] = 1
# fill extras
self.extras["episode"] = {}
for key in self.episode_sums.keys():
self.extras["episode"]['rew_' + key] = torch.mean(self.episode_sums[key][env_ids]) / self.max_episode_length_s
self.episode_sums[key][env_ids] = 0.
if self.cfg.commands.curriculum:
self.extras["episode"]["max_command_x"] = self.command_ranges["lin_vel_x"][1]
# send timeout info to the algorithm
if self.cfg.env.send_timeouts:
self.extras["time_outs"] = self.time_out_buf
def compute_reward(self):
""" Compute rewards
Calls each reward function which had a non-zero scale (processed in self._prepare_reward_function())
adds each terms to the episode sums and to the total reward
"""
self.rew_buf[:] = 0.
for i in range(len(self.reward_functions)):
name = self.reward_names[i]
rew = self.reward_functions[i]() * self.reward_scales[name]
self.rew_buf += rew
self.episode_sums[name] += rew
if self.cfg.rewards.only_positive_rewards:
self.rew_buf[:] = torch.clip(self.rew_buf[:], min=0.)
# add termination reward after clipping
if "termination" in self.reward_scales:
rew = self._reward_termination() * self.reward_scales["termination"]
self.rew_buf += rew
self.episode_sums["termination"] += rew
def compute_observations(self):
""" Computes observations
"""
self.obs_buf = torch.cat(( self.base_lin_vel * self.obs_scales.lin_vel,
self.base_ang_vel * self.obs_scales.ang_vel,
self.projected_gravity,
self.commands[:, :3] * self.commands_scale,
(self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos,
self.dof_vel * self.obs_scales.dof_vel,
self.actions
),dim=-1)
# add perceptive inputs if not blind
# add noise if needed
if self.add_noise:
self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec
def create_sim(self):
""" Creates simulation, terrain and evironments
"""
self.up_axis_idx = 2 # 2 for z, 1 for y -> adapt gravity accordingly
self.sim = self.gym.create_sim(self.sim_device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_ground_plane()
self._create_envs()
def set_camera(self, position, lookat):
""" Set camera position and direction
"""
cam_pos = gymapi.Vec3(position[0], position[1], position[2])
cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2])
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
#------------- Callbacks --------------
def _process_rigid_shape_props(self, props, env_id):
""" Callback allowing to store/change/randomize the rigid shape properties of each environment.
Called During environment creation.
Base behavior: randomizes the friction of each environment
Args:
props (List[gymapi.RigidShapeProperties]): Properties of each shape of the asset
env_id (int): Environment id
Returns:
[List[gymapi.RigidShapeProperties]]: Modified rigid shape properties
"""
if self.cfg.domain_rand.randomize_friction:
if env_id==0:
# prepare friction randomization
friction_range = self.cfg.domain_rand.friction_range
num_buckets = 64
bucket_ids = torch.randint(0, num_buckets, (self.num_envs, 1))
friction_buckets = torch_rand_float(friction_range[0], friction_range[1], (num_buckets,1), device='cpu')
self.friction_coeffs = friction_buckets[bucket_ids]
for s in range(len(props)):
props[s].friction = self.friction_coeffs[env_id]
return props
def _process_dof_props(self, props, env_id):
""" Callback allowing to store/change/randomize the DOF properties of each environment.
Called During environment creation.
Base behavior: stores position, velocity and torques limits defined in the URDF
Args:
props (numpy.array): Properties of each DOF of the asset
env_id (int): Environment id
Returns:
[numpy.array]: Modified DOF properties
"""
if env_id==0:
self.dof_pos_limits = torch.zeros(self.num_dof, 2, dtype=torch.float, device=self.device, requires_grad=False)
self.dof_vel_limits = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False)
self.torque_limits = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False)
for i in range(len(props)):
self.dof_pos_limits[i, 0] = props["lower"][i].item()
self.dof_pos_limits[i, 1] = props["upper"][i].item()
self.dof_vel_limits[i] = props["velocity"][i].item()
self.torque_limits[i] = props["effort"][i].item()
# soft limits
m = (self.dof_pos_limits[i, 0] + self.dof_pos_limits[i, 1]) / 2
r = self.dof_pos_limits[i, 1] - self.dof_pos_limits[i, 0]
self.dof_pos_limits[i, 0] = m - 0.5 * r * self.cfg.rewards.soft_dof_pos_limit
self.dof_pos_limits[i, 1] = m + 0.5 * r * self.cfg.rewards.soft_dof_pos_limit
return props
def _process_rigid_body_props(self, props, env_id):
# if env_id==0:
# sum = 0
# for i, p in enumerate(props):
# sum += p.mass
# print(f"Mass of body {i}: {p.mass} (before randomization)")
# print(f"Total mass {sum} (before randomization)")
# randomize base mass
if self.cfg.domain_rand.randomize_base_mass:
rng = self.cfg.domain_rand.added_mass_range
props[0].mass += np.random.uniform(rng[0], rng[1])
return props
def _post_physics_step_callback(self):
""" Callback called before computing terminations, rewards, and observations
Default behaviour: Compute ang vel command based on target and heading, compute measured terrain heights and randomly push robots
"""
#
env_ids = (self.episode_length_buf % int(self.cfg.commands.resampling_time / self.dt)==0).nonzero(as_tuple=False).flatten()
self._resample_commands(env_ids)
if self.cfg.commands.heading_command:
forward = quat_apply(self.base_quat, self.forward_vec)
heading = torch.atan2(forward[:, 1], forward[:, 0])
self.commands[:, 2] = torch.clip(0.5*wrap_to_pi(self.commands[:, 3] - heading), -1., 1.)
if self.cfg.domain_rand.push_robots and (self.common_step_counter % self.cfg.domain_rand.push_interval == 0):
self._push_robots()
def _resample_commands(self, env_ids):
""" Randommly select commands of some environments
Args:
env_ids (List[int]): Environments ids for which new commands are needed
"""
self.commands[env_ids, 0] = torch_rand_float(self.command_ranges["lin_vel_x"][0], self.command_ranges["lin_vel_x"][1], (len(env_ids), 1), device=self.device).squeeze(1)
self.commands[env_ids, 1] = torch_rand_float(self.command_ranges["lin_vel_y"][0], self.command_ranges["lin_vel_y"][1], (len(env_ids), 1), device=self.device).squeeze(1)
if self.cfg.commands.heading_command:
self.commands[env_ids, 3] = torch_rand_float(self.command_ranges["heading"][0], self.command_ranges["heading"][1], (len(env_ids), 1), device=self.device).squeeze(1)
else:
self.commands[env_ids, 2] = torch_rand_float(self.command_ranges["ang_vel_yaw"][0], self.command_ranges["ang_vel_yaw"][1], (len(env_ids), 1), device=self.device).squeeze(1)
# set small commands to zero
self.commands[env_ids, :2] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.2).unsqueeze(1)
def _compute_torques(self, actions):
""" Compute torques from actions.
Actions can be interpreted as position or velocity targets given to a PD controller, or directly as scaled torques.
[NOTE]: torques must have the same dimension as the number of DOFs, even if some DOFs are not actuated.
Args:
actions (torch.Tensor): Actions
Returns:
[torch.Tensor]: Torques sent to the simulation
"""
#pd controller
actions_scaled = actions * self.cfg.control.action_scale
control_type = self.cfg.control.control_type
if control_type=="P":
torques = self.p_gains*(actions_scaled + self.default_dof_pos - self.dof_pos) - self.d_gains*self.dof_vel
elif control_type=="V":
torques = self.p_gains*(actions_scaled - self.dof_vel) - self.d_gains*(self.dof_vel - self.last_dof_vel)/self.sim_params.dt
elif control_type=="T":
torques = actions_scaled
else:
raise NameError(f"Unknown controller type: {control_type}")
return torch.clip(torques, -self.torque_limits, self.torque_limits)
def _reset_dofs(self, env_ids):
""" Resets DOF position and velocities of selected environmments
Positions are randomly selected within 0.5:1.5 x default positions.
Velocities are set to zero.
Args:
env_ids (List[int]): Environemnt ids
"""
self.dof_pos[env_ids] = self.default_dof_pos * torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device)
self.dof_vel[env_ids] = 0.
env_ids_int32 = env_ids.to(dtype=torch.int32)
self.gym.set_dof_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
def _reset_root_states(self, env_ids):
""" Resets ROOT states position and velocities of selected environmments
Sets base position based on the curriculum
Selects randomized base velocities within -0.5:0.5 [m/s, rad/s]
Args:
env_ids (List[int]): Environemnt ids
"""
# base position
if self.custom_origins:
self.root_states[env_ids] = self.base_init_state
self.root_states[env_ids, :3] += self.env_origins[env_ids]
self.root_states[env_ids, :2] += torch_rand_float(-1., 1., (len(env_ids), 2), device=self.device) # xy position within 1m of the center
else:
self.root_states[env_ids] = self.base_init_state
self.root_states[env_ids, :3] += self.env_origins[env_ids]
# base velocities
self.root_states[env_ids, 7:13] = torch_rand_float(-0.5, 0.5, (len(env_ids), 6), device=self.device) # [7:10]: lin vel, [10:13]: ang vel
env_ids_int32 = env_ids.to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
def _push_robots(self):
""" Random pushes the robots. Emulates an impulse by setting a randomized base velocity.
"""
max_vel = self.cfg.domain_rand.max_push_vel_xy
self.root_states[:, 7:9] = torch_rand_float(-max_vel, max_vel, (self.num_envs, 2), device=self.device) # lin vel x/y
self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states))
def update_command_curriculum(self, env_ids):
""" Implements a curriculum of increasing commands
Args:
env_ids (List[int]): ids of environments being reset
"""
# If the tracking reward is above 80% of the maximum, increase the range of commands
if torch.mean(self.episode_sums["tracking_lin_vel"][env_ids]) / self.max_episode_length > 0.8 * self.reward_scales["tracking_lin_vel"]:
self.command_ranges["lin_vel_x"][0] = np.clip(self.command_ranges["lin_vel_x"][0] - 0.5, -self.cfg.commands.max_curriculum, 0.)
self.command_ranges["lin_vel_x"][1] = np.clip(self.command_ranges["lin_vel_x"][1] + 0.5, 0., self.cfg.commands.max_curriculum)
def _get_noise_scale_vec(self, cfg):
""" Sets a vector used to scale the noise added to the observations.
[NOTE]: Must be adapted when changing the observations structure
Args:
cfg (Dict): Environment config file
Returns:
[torch.Tensor]: Vector of scales used to multiply a uniform distribution in [-1, 1]
"""
noise_vec = torch.zeros_like(self.obs_buf[0])
self.add_noise = self.cfg.noise.add_noise
noise_scales = self.cfg.noise.noise_scales
noise_level = self.cfg.noise.noise_level
noise_vec[:3] = noise_scales.lin_vel * noise_level * self.obs_scales.lin_vel
noise_vec[3:6] = noise_scales.ang_vel * noise_level * self.obs_scales.ang_vel
noise_vec[6:9] = noise_scales.gravity * noise_level
noise_vec[9:12] = 0. # commands
2024-01-12 15:41:58 +08:00
noise_vec[12:12+self.num_actions] = noise_scales.dof_pos * noise_level * self.obs_scales.dof_pos
noise_vec[12+self.num_actions:12+2*self.num_actions] = noise_scales.dof_vel * noise_level * self.obs_scales.dof_vel
noise_vec[12+2*self.num_actions:12+3*self.num_actions] = 0. # previous actions
2023-10-11 15:38:49 +08:00
return noise_vec
#----------------------------------------
def _init_buffers(self):
""" Initialize torch tensors which will contain simulation states and processed quantities
"""
# get gym GPU state tensors
actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim)
dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_net_contact_force_tensor(self.sim)
# create some wrapper tensors for different slices
self.root_states = gymtorch.wrap_tensor(actor_root_state)
self.dof_state = gymtorch.wrap_tensor(dof_state_tensor)
self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0]
self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1]
self.base_quat = self.root_states[:, 3:7]
2024-01-12 16:05:39 +08:00
self.rpy = get_euler_xyz_in_tensor(self.base_quat)
2023-10-11 15:38:49 +08:00
self.base_pos = self.root_states[:self.num_envs, 0:3]
self.contact_forces = gymtorch.wrap_tensor(net_contact_forces).view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis
# initialize some data used later on
self.common_step_counter = 0
self.extras = {}
self.noise_scale_vec = self._get_noise_scale_vec(self.cfg)
self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1))
self.forward_vec = to_torch([1., 0., 0.], device=self.device).repeat((self.num_envs, 1))
self.torques = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.p_gains = torch.zeros(self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.d_gains = torch.zeros(self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False)
self.last_dof_vel = torch.zeros_like(self.dof_vel)
self.last_root_vel = torch.zeros_like(self.root_states[:, 7:13])
self.commands = torch.zeros(self.num_envs, self.cfg.commands.num_commands, dtype=torch.float, device=self.device, requires_grad=False) # x vel, y vel, yaw vel, heading
self.commands_scale = torch.tensor([self.obs_scales.lin_vel, self.obs_scales.lin_vel, self.obs_scales.ang_vel], device=self.device, requires_grad=False,) # TODO change this
self.feet_air_time = torch.zeros(self.num_envs, self.feet_indices.shape[0], dtype=torch.float, device=self.device, requires_grad=False)
self.last_contacts = torch.zeros(self.num_envs, len(self.feet_indices), dtype=torch.bool, device=self.device, requires_grad=False)
self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 7:10])
self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.root_states[:, 10:13])
self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec)
# joint positions offsets and PD gains
self.default_dof_pos = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False)
for i in range(self.num_dofs):
name = self.dof_names[i]
angle = self.cfg.init_state.default_joint_angles[name]
self.default_dof_pos[i] = angle
found = False
for dof_name in self.cfg.control.stiffness.keys():
if dof_name in name:
self.p_gains[i] = self.cfg.control.stiffness[dof_name]
self.d_gains[i] = self.cfg.control.damping[dof_name]
found = True
if not found:
self.p_gains[i] = 0.
self.d_gains[i] = 0.
if self.cfg.control.control_type in ["P", "V"]:
print(f"PD gain of joint {name} were not defined, setting them to zero")
self.default_dof_pos = self.default_dof_pos.unsqueeze(0)
def _prepare_reward_function(self):
""" Prepares a list of reward functions, whcih will be called to compute the total reward.
Looks for self._reward_<REWARD_NAME>, where <REWARD_NAME> are names of all non zero reward scales in the cfg.
"""
# remove zero scales + multiply non-zero ones by dt
for key in list(self.reward_scales.keys()):
scale = self.reward_scales[key]
if scale==0:
self.reward_scales.pop(key)
else:
self.reward_scales[key] *= self.dt
# prepare list of functions
self.reward_functions = []
self.reward_names = []
for name, scale in self.reward_scales.items():
if name=="termination":
continue
self.reward_names.append(name)
name = '_reward_' + name
self.reward_functions.append(getattr(self, name))
# reward episode sums
self.episode_sums = {name: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False)
for name in self.reward_scales.keys()}
def _create_ground_plane(self):
""" Adds a ground plane to the simulation, sets friction and restitution based on the cfg.
"""
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.static_friction = self.cfg.terrain.static_friction
plane_params.dynamic_friction = self.cfg.terrain.dynamic_friction
plane_params.restitution = self.cfg.terrain.restitution
self.gym.add_ground(self.sim, plane_params)
def _create_envs(self):
""" Creates environments:
1. loads the robot URDF/MJCF asset,
2. For each environment
2.1 creates the environment,
2.2 calls DOF and Rigid shape properties callbacks,
2.3 create actor with these properties and add them to the env
3. Store indices of different bodies of the robot
"""
asset_path = self.cfg.asset.file.format(LEGGED_GYM_ROOT_DIR=LEGGED_GYM_ROOT_DIR)
asset_root = os.path.dirname(asset_path)
asset_file = os.path.basename(asset_path)
asset_options = gymapi.AssetOptions()
asset_options.default_dof_drive_mode = self.cfg.asset.default_dof_drive_mode
asset_options.collapse_fixed_joints = self.cfg.asset.collapse_fixed_joints
asset_options.replace_cylinder_with_capsule = self.cfg.asset.replace_cylinder_with_capsule
asset_options.flip_visual_attachments = self.cfg.asset.flip_visual_attachments
asset_options.fix_base_link = self.cfg.asset.fix_base_link
asset_options.density = self.cfg.asset.density
asset_options.angular_damping = self.cfg.asset.angular_damping
asset_options.linear_damping = self.cfg.asset.linear_damping
asset_options.max_angular_velocity = self.cfg.asset.max_angular_velocity
asset_options.max_linear_velocity = self.cfg.asset.max_linear_velocity
asset_options.armature = self.cfg.asset.armature
asset_options.thickness = self.cfg.asset.thickness
asset_options.disable_gravity = self.cfg.asset.disable_gravity
robot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
self.num_dof = self.gym.get_asset_dof_count(robot_asset)
self.num_bodies = self.gym.get_asset_rigid_body_count(robot_asset)
dof_props_asset = self.gym.get_asset_dof_properties(robot_asset)
rigid_shape_props_asset = self.gym.get_asset_rigid_shape_properties(robot_asset)
# save body names from the asset
body_names = self.gym.get_asset_rigid_body_names(robot_asset)
self.dof_names = self.gym.get_asset_dof_names(robot_asset)
self.num_bodies = len(body_names)
self.num_dofs = len(self.dof_names)
feet_names = [s for s in body_names if self.cfg.asset.foot_name in s]
penalized_contact_names = []
for name in self.cfg.asset.penalize_contacts_on:
penalized_contact_names.extend([s for s in body_names if name in s])
termination_contact_names = []
for name in self.cfg.asset.terminate_after_contacts_on:
termination_contact_names.extend([s for s in body_names if name in s])
base_init_state_list = self.cfg.init_state.pos + self.cfg.init_state.rot + self.cfg.init_state.lin_vel + self.cfg.init_state.ang_vel
self.base_init_state = to_torch(base_init_state_list, device=self.device, requires_grad=False)
start_pose = gymapi.Transform()
start_pose.p = gymapi.Vec3(*self.base_init_state[:3])
self._get_env_origins()
env_lower = gymapi.Vec3(0., 0., 0.)
env_upper = gymapi.Vec3(0., 0., 0.)
self.actor_handles = []
self.envs = []
for i in range(self.num_envs):
# create env instance
env_handle = self.gym.create_env(self.sim, env_lower, env_upper, int(np.sqrt(self.num_envs)))
pos = self.env_origins[i].clone()
pos[:2] += torch_rand_float(-1., 1., (2,1), device=self.device).squeeze(1)
start_pose.p = gymapi.Vec3(*pos)
rigid_shape_props = self._process_rigid_shape_props(rigid_shape_props_asset, i)
self.gym.set_asset_rigid_shape_properties(robot_asset, rigid_shape_props)
actor_handle = self.gym.create_actor(env_handle, robot_asset, start_pose, self.cfg.asset.name, i, self.cfg.asset.self_collisions, 0)
dof_props = self._process_dof_props(dof_props_asset, i)
self.gym.set_actor_dof_properties(env_handle, actor_handle, dof_props)
body_props = self.gym.get_actor_rigid_body_properties(env_handle, actor_handle)
body_props = self._process_rigid_body_props(body_props, i)
self.gym.set_actor_rigid_body_properties(env_handle, actor_handle, body_props, recomputeInertia=True)
self.envs.append(env_handle)
self.actor_handles.append(actor_handle)
self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False)
for i in range(len(feet_names)):
self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], feet_names[i])
self.penalised_contact_indices = torch.zeros(len(penalized_contact_names), dtype=torch.long, device=self.device, requires_grad=False)
for i in range(len(penalized_contact_names)):
self.penalised_contact_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], penalized_contact_names[i])
self.termination_contact_indices = torch.zeros(len(termination_contact_names), dtype=torch.long, device=self.device, requires_grad=False)
for i in range(len(termination_contact_names)):
self.termination_contact_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], termination_contact_names[i])
def _get_env_origins(self):
""" Sets environment origins. On rough terrain the origins are defined by the terrain platforms.
Otherwise create a grid.
"""
self.custom_origins = False
self.env_origins = torch.zeros(self.num_envs, 3, device=self.device, requires_grad=False)
# create a grid of robots
num_cols = np.floor(np.sqrt(self.num_envs))
num_rows = np.ceil(self.num_envs / num_cols)
xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols))
spacing = self.cfg.env.env_spacing
self.env_origins[:, 0] = spacing * xx.flatten()[:self.num_envs]
self.env_origins[:, 1] = spacing * yy.flatten()[:self.num_envs]
self.env_origins[:, 2] = 0.
def _parse_cfg(self, cfg):
self.dt = self.cfg.control.decimation * self.sim_params.dt
self.obs_scales = self.cfg.normalization.obs_scales
self.reward_scales = class_to_dict(self.cfg.rewards.scales)
self.command_ranges = class_to_dict(self.cfg.commands.ranges)
self.max_episode_length_s = self.cfg.env.episode_length_s
self.max_episode_length = np.ceil(self.max_episode_length_s / self.dt)
self.cfg.domain_rand.push_interval = np.ceil(self.cfg.domain_rand.push_interval_s / self.dt)
#------------ reward functions----------------
def _reward_lin_vel_z(self):
# Penalize z axis base linear velocity
return torch.square(self.base_lin_vel[:, 2])
def _reward_ang_vel_xy(self):
# Penalize xy axes base angular velocity
return torch.sum(torch.square(self.base_ang_vel[:, :2]), dim=1)
def _reward_orientation(self):
# Penalize non flat base orientation
return torch.sum(torch.square(self.projected_gravity[:, :2]), dim=1)
def _reward_base_height(self):
# Penalize base height away from target
2024-01-12 15:41:58 +08:00
base_height = self.root_states[:, 2]
2023-10-11 15:38:49 +08:00
return torch.square(base_height - self.cfg.rewards.base_height_target)
def _reward_torques(self):
# Penalize torques
return torch.sum(torch.square(self.torques), dim=1)
def _reward_dof_vel(self):
# Penalize dof velocities
return torch.sum(torch.square(self.dof_vel), dim=1)
def _reward_dof_acc(self):
# Penalize dof accelerations
return torch.sum(torch.square((self.last_dof_vel - self.dof_vel) / self.dt), dim=1)
def _reward_action_rate(self):
# Penalize changes in actions
return torch.sum(torch.square(self.last_actions - self.actions), dim=1)
def _reward_collision(self):
# Penalize collisions on selected bodies
return torch.sum(1.*(torch.norm(self.contact_forces[:, self.penalised_contact_indices, :], dim=-1) > 0.1), dim=1)
def _reward_termination(self):
# Terminal reward / penalty
return self.reset_buf * ~self.time_out_buf
def _reward_dof_pos_limits(self):
# Penalize dof positions too close to the limit
out_of_limits = -(self.dof_pos - self.dof_pos_limits[:, 0]).clip(max=0.) # lower limit
out_of_limits += (self.dof_pos - self.dof_pos_limits[:, 1]).clip(min=0.)
return torch.sum(out_of_limits, dim=1)
def _reward_dof_vel_limits(self):
# Penalize dof velocities too close to the limit
# clip to max error = 1 rad/s per joint to avoid huge penalties
return torch.sum((torch.abs(self.dof_vel) - self.dof_vel_limits*self.cfg.rewards.soft_dof_vel_limit).clip(min=0., max=1.), dim=1)
def _reward_torque_limits(self):
# penalize torques too close to the limit
return torch.sum((torch.abs(self.torques) - self.torque_limits*self.cfg.rewards.soft_torque_limit).clip(min=0.), dim=1)
def _reward_tracking_lin_vel(self):
# Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(self.commands[:, :2] - self.base_lin_vel[:, :2]), dim=1)
return torch.exp(-lin_vel_error/self.cfg.rewards.tracking_sigma)
def _reward_tracking_ang_vel(self):
# Tracking of angular velocity commands (yaw)
ang_vel_error = torch.square(self.commands[:, 2] - self.base_ang_vel[:, 2])
return torch.exp(-ang_vel_error/self.cfg.rewards.tracking_sigma)
def _reward_feet_air_time(self):
# Reward long steps
# Need to filter the contacts because the contact reporting of PhysX is unreliable on meshes
contact = self.contact_forces[:, self.feet_indices, 2] > 1.
contact_filt = torch.logical_or(contact, self.last_contacts)
self.last_contacts = contact
first_contact = (self.feet_air_time > 0.) * contact_filt
self.feet_air_time += self.dt
rew_airTime = torch.sum((self.feet_air_time - 0.5) * first_contact, dim=1) # reward only on first contact with the ground
rew_airTime *= torch.norm(self.commands[:, :2], dim=1) > 0.1 #no reward for zero command
self.feet_air_time *= ~contact_filt
return rew_airTime
def _reward_stumble(self):
# Penalize feet hitting vertical surfaces
return torch.any(torch.norm(self.contact_forces[:, self.feet_indices, :2], dim=2) >\
5 *torch.abs(self.contact_forces[:, self.feet_indices, 2]), dim=1)
def _reward_stand_still(self):
# Penalize motion at zero commands
return torch.sum(torch.abs(self.dof_pos - self.default_dof_pos), dim=1) * (torch.norm(self.commands[:, :2], dim=1) < 0.1)
def _reward_feet_contact_forces(self):
# penalize high contact forces
return torch.sum((torch.norm(self.contact_forces[:, self.feet_indices, :], dim=-1) - self.cfg.rewards.max_contact_force).clip(min=0.), dim=1)