Implemented first version of sim2real pipeline for step command
This commit is contained in:
parent
daee040908
commit
7fb210f5fe
|
@ -0,0 +1,258 @@
|
||||||
|
import time
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
def linear_map(val, in_min, in_max, out_min, out_max):
|
||||||
|
"""Linearly map val from [in_min, in_max] to [out_min, out_max]."""
|
||||||
|
return out_min + (val - in_min) * (out_max - out_min) / (in_max - in_min)
|
||||||
|
|
||||||
|
def quaternion_multiply(q1, q2):
|
||||||
|
# q = [w, x, y, z]
|
||||||
|
w1, x1, y1, z1 = q1
|
||||||
|
w2, x2, y2, z2 = q2
|
||||||
|
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
|
||||||
|
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
|
||||||
|
y = w1*y2 - x1*z2 + y1*w2 + z1*x2
|
||||||
|
z = w1*z2 + x1*y2 - y1*x2 + z1*w2
|
||||||
|
return np.array([w, x, y, z], dtype=np.float32)
|
||||||
|
|
||||||
|
def quaternion_rotate(q, v):
|
||||||
|
"""Rotate vector v by quaternion q."""
|
||||||
|
q_conj = np.array([q[0], -q[1], -q[2], -q[3]], dtype=np.float32)
|
||||||
|
v_q = np.concatenate(([0.0], v))
|
||||||
|
rotated = quaternion_multiply(quaternion_multiply(q, v_q), q_conj)
|
||||||
|
return rotated[1:]
|
||||||
|
|
||||||
|
def yaw_to_quaternion(yaw):
|
||||||
|
"""Convert yaw angle (radians) to a quaternion (w, x, y, z)."""
|
||||||
|
half_yaw = yaw / 2.0
|
||||||
|
return np.array([np.cos(half_yaw), 0.0, 0.0, np.sin(half_yaw)], dtype=np.float32)
|
||||||
|
|
||||||
|
def combine_frame_transforms(pos, quat, rel_pos, rel_quat):
|
||||||
|
"""
|
||||||
|
Combine two transforms:
|
||||||
|
T_new = T * T_rel
|
||||||
|
where T is given by (pos, quat) and T_rel by (rel_pos, rel_quat).
|
||||||
|
"""
|
||||||
|
new_pos = pos + quaternion_rotate(quat, rel_pos)
|
||||||
|
new_quat = quaternion_multiply(quat, rel_quat)
|
||||||
|
return new_pos, new_quat
|
||||||
|
|
||||||
|
# ----------------------
|
||||||
|
# StepCommand Class
|
||||||
|
# ----------------------
|
||||||
|
class StepCommand:
|
||||||
|
def __init__(self, current_left_pose, current_right_pose):
|
||||||
|
"""
|
||||||
|
Initialize with the current foot poses.
|
||||||
|
Each pose is a 7-dimensional vector: [x, y, z, qw, qx, qy, qz].
|
||||||
|
Both next_ctarget_left and next_ctarget_right are initialized to these values.
|
||||||
|
Also, store the maximum ranges for x, y, and theta.
|
||||||
|
- x_range: (-0.2, 0.2)
|
||||||
|
- y_range: (0.2, 0.4)
|
||||||
|
- theta_range: (-0.3, 0.3)
|
||||||
|
"""
|
||||||
|
self.next_ctarget_left = current_left_pose.copy()
|
||||||
|
self.next_ctarget_right = current_right_pose.copy()
|
||||||
|
self.next_ctime_left = 0.8
|
||||||
|
self.next_ctime_right = 1.2
|
||||||
|
self.delta_ctime = 0.4 # Fixed time delta for a new step
|
||||||
|
self.max_range = {
|
||||||
|
'x_range': (-0.2, 0.2),
|
||||||
|
'y_range': (0.2, 0.4),
|
||||||
|
'theta_range': (-0.3, 0.3)
|
||||||
|
}
|
||||||
|
|
||||||
|
def compute_relstep_left(self, lx, ly, rx):
|
||||||
|
"""
|
||||||
|
Compute the left foot relative step based on remote controller inputs.
|
||||||
|
|
||||||
|
Mapping:
|
||||||
|
- x: map ly in [-1,1] to self.max_range['x_range'].
|
||||||
|
- y: baseline for left is self.max_range['y_range'][0]. If lx > 0,
|
||||||
|
add an offset mapping lx in [0,1] to [0, self.max_range['y_range'][1]-self.max_range['y_range'][0]].
|
||||||
|
- z: fixed at 0.
|
||||||
|
- rotation: map rx in [-1,1] to self.max_range['theta_range'] and convert to quaternion.
|
||||||
|
"""
|
||||||
|
delta_x = linear_map(ly, -1, 1, self.max_range['x_range'][0], self.max_range['x_range'][1])
|
||||||
|
baseline_left = self.max_range['y_range'][0]
|
||||||
|
extra_y = linear_map(lx, 0, 1, 0, self.max_range['y_range'][1] - self.max_range['y_range'][0]) if lx > 0 else 0.0
|
||||||
|
delta_y = baseline_left + extra_y
|
||||||
|
delta_z = 0.0
|
||||||
|
theta = linear_map(rx, -1, 1, self.max_range['theta_range'][0], self.max_range['theta_range'][1])
|
||||||
|
q = yaw_to_quaternion(theta)
|
||||||
|
return np.array([delta_x, delta_y, delta_z, q[0], q[1], q[2], q[3]], dtype=np.float32)
|
||||||
|
|
||||||
|
def compute_relstep_right(self, lx, ly, rx):
|
||||||
|
"""
|
||||||
|
Compute the right foot relative step based on remote controller inputs.
|
||||||
|
|
||||||
|
Mapping:
|
||||||
|
- x: map ly in [-1,1] to self.max_range['x_range'].
|
||||||
|
- y: baseline for right is the negative of self.max_range['y_range'][0]. If lx < 0,
|
||||||
|
add an offset mapping lx in [-1,0] to [- (self.max_range['y_range'][1]-self.max_range['y_range'][0]), 0].
|
||||||
|
- z: fixed at 0.
|
||||||
|
- rotation: map rx in [-1,1] to self.max_range['theta_range'] and convert to quaternion.
|
||||||
|
"""
|
||||||
|
delta_x = linear_map(ly, -1, 1, self.max_range['x_range'][0], self.max_range['x_range'][1])
|
||||||
|
baseline_right = -self.max_range['y_range'][0]
|
||||||
|
extra_y = linear_map(lx, -1, 0, -(self.max_range['y_range'][1] - self.max_range['y_range'][0]), 0) if lx < 0 else 0.0
|
||||||
|
delta_y = baseline_right + extra_y
|
||||||
|
delta_z = 0.0
|
||||||
|
theta = linear_map(rx, -1, 1, self.max_range['theta_range'][0], self.max_range['theta_range'][1])
|
||||||
|
q = yaw_to_quaternion(theta)
|
||||||
|
return np.array([delta_x, delta_y, delta_z, q[0], q[1], q[2], q[3]], dtype=np.float32)
|
||||||
|
|
||||||
|
def get_next_ctarget(self, remote_controller, count):
|
||||||
|
"""
|
||||||
|
Given the remote controller inputs and elapsed time (count),
|
||||||
|
compute relative step commands for left and right feet and update
|
||||||
|
the outdated targets accordingly.
|
||||||
|
|
||||||
|
Update procedure:
|
||||||
|
- When the left foot is due (count > next_ctime_left), update it by combining
|
||||||
|
the right foot target with the left relative step.
|
||||||
|
- Similarly, when the right foot is due (count > next_ctime_right), update it using
|
||||||
|
the left foot target and the right relative step.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A concatenated 14-dimensional vector:
|
||||||
|
[left_foot_target (7D), right_foot_target (7D)]
|
||||||
|
"""
|
||||||
|
lx = remote_controller.lx
|
||||||
|
ly = remote_controller.ly
|
||||||
|
rx = remote_controller.rx
|
||||||
|
|
||||||
|
# Compute relative steps using the internal methods.
|
||||||
|
relstep_left = self.compute_relstep_left(lx, ly, rx)
|
||||||
|
relstep_right = self.compute_relstep_right(lx, ly, rx)
|
||||||
|
from icecream import ic
|
||||||
|
|
||||||
|
# Update left foot target if its scheduled time has elapsed.
|
||||||
|
if count > self.next_ctime_left:
|
||||||
|
self.next_ctime_left = self.next_ctime_right + self.delta_ctime
|
||||||
|
new_pos, new_quat = combine_frame_transforms(
|
||||||
|
self.next_ctarget_right[:3],
|
||||||
|
self.next_ctarget_right[3:7],
|
||||||
|
relstep_left[:3],
|
||||||
|
relstep_left[3:7],
|
||||||
|
)
|
||||||
|
self.next_ctarget_left[:3] = new_pos
|
||||||
|
self.next_ctarget_left[3:7] = new_quat
|
||||||
|
|
||||||
|
# Update right foot target if its scheduled time has elapsed.
|
||||||
|
if count > self.next_ctime_right:
|
||||||
|
self.next_ctime_right = self.next_ctime_left + self.delta_ctime
|
||||||
|
new_pos, new_quat = combine_frame_transforms(
|
||||||
|
self.next_ctarget_left[:3],
|
||||||
|
self.next_ctarget_left[3:7],
|
||||||
|
relstep_right[:3],
|
||||||
|
relstep_right[3:7],
|
||||||
|
)
|
||||||
|
self.next_ctarget_right[:3] = new_pos
|
||||||
|
self.next_ctarget_right[3:7] = new_quat
|
||||||
|
|
||||||
|
# Return the concatenated target: left (7D) followed by right (7D).
|
||||||
|
return (np.concatenate((self.next_ctarget_left, self.next_ctarget_right)),
|
||||||
|
(self.next_ctime_left - count),
|
||||||
|
(self.next_ctarget_right - count))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# For testing purposes, we define a dummy remote controller that mimics the attributes lx, ly, and rx.
|
||||||
|
class DummyRemoteController:
|
||||||
|
def __init__(self, lx=0.0, ly=0.0, rx=0.0):
|
||||||
|
self.lx = lx # lateral command input in range [-1,1]
|
||||||
|
self.ly = ly # forward/backward command input in range [-1,1]
|
||||||
|
self.rx = rx # yaw command input in range [-1,1]
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Initial foot poses (7D each): [x, y, z, qw, qx, qy, qz]
|
||||||
|
current_left_pose = np.array([0.0, 0.2, 0.0, 1.0, 0.0, 0.0, 0.0], dtype=np.float32)
|
||||||
|
current_right_pose = np.array([0.0, -0.2, 0.0, 1.0, 0.0, 0.0, 0.0], dtype=np.float32)
|
||||||
|
|
||||||
|
# Create an instance of StepCommand with the initial poses.
|
||||||
|
step_command = StepCommand(current_left_pose, current_right_pose)
|
||||||
|
|
||||||
|
# Create a dummy remote controller.
|
||||||
|
dummy_remote = DummyRemoteController()
|
||||||
|
|
||||||
|
# Set up matplotlib for interactive plotting.
|
||||||
|
plt.ion()
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
ax.set_xlim(-1, 1)
|
||||||
|
ax.set_ylim(-1, 1)
|
||||||
|
ax.set_xlabel("X")
|
||||||
|
ax.set_ylabel("Y")
|
||||||
|
ax.set_title("Footstep Target Visualization")
|
||||||
|
|
||||||
|
print("Starting test. Press Ctrl+C to exit.")
|
||||||
|
start_time = time.time()
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
elapsed = time.time() - start_time
|
||||||
|
|
||||||
|
# For demonstration, vary the controller inputs over time:
|
||||||
|
# - ly oscillates between -1 and 1 (forward/backward)
|
||||||
|
# - lx oscillates between -1 and 1 (lateral left/right)
|
||||||
|
# - rx is held at 0 (no yaw command)
|
||||||
|
# dummy_remote.ly = math.sin(elapsed) # forward/backward command
|
||||||
|
# dummy_remote.lx = math.cos(elapsed) # lateral command
|
||||||
|
dummy_remote.ly = 0.0
|
||||||
|
dummy_remote.lx = 0.0
|
||||||
|
dummy_remote.rx = 1. # no yaw
|
||||||
|
|
||||||
|
# Get the current footstep target (14-dimensional)
|
||||||
|
ctarget = step_command.get_next_ctarget(dummy_remote, elapsed)
|
||||||
|
print("Time: {:.2f} s, ctarget: {}".format(elapsed, ctarget))
|
||||||
|
|
||||||
|
# Extract left foot and right foot positions:
|
||||||
|
# Left foot: indices 0:7 (position: [0:3], quaternion: [3:7])
|
||||||
|
left_pos = ctarget[0:3] # [x, y, z]
|
||||||
|
left_quat = ctarget[3:7] # [qw, qx, qy, qz]
|
||||||
|
# Right foot: indices 7:14 (position: [7:10], quaternion: [10:14])
|
||||||
|
right_pos = ctarget[7:10]
|
||||||
|
right_quat = ctarget[10:14]
|
||||||
|
|
||||||
|
# For visualization, we use only the x and y components.
|
||||||
|
left_x, left_y = left_pos[0], left_pos[1]
|
||||||
|
right_x, right_y = right_pos[0], right_pos[1]
|
||||||
|
|
||||||
|
# Assuming rotation only about z, compute yaw angle from quaternion:
|
||||||
|
# yaw = 2 * atan2(qz, qw)
|
||||||
|
left_yaw = 2 * math.atan2(left_quat[3], left_quat[0])
|
||||||
|
right_yaw = 2 * math.atan2(right_quat[3], right_quat[0])
|
||||||
|
|
||||||
|
# Clear and redraw the plot.
|
||||||
|
ax.cla()
|
||||||
|
ax.set_xlim(-1, 1)
|
||||||
|
ax.set_ylim(-1, 1)
|
||||||
|
ax.set_xlabel("X")
|
||||||
|
ax.set_ylabel("Y")
|
||||||
|
ax.set_title("Footstep Target Visualization")
|
||||||
|
|
||||||
|
# Plot the left and right foot positions.
|
||||||
|
ax.plot(left_x, left_y, 'bo', label='Left Foot')
|
||||||
|
ax.plot(right_x, right_y, 'ro', label='Right Foot')
|
||||||
|
|
||||||
|
# Draw an arrow for each foot to indicate orientation.
|
||||||
|
arrow_length = 0.1
|
||||||
|
ax.arrow(left_x, left_y,
|
||||||
|
arrow_length * math.cos(left_yaw),
|
||||||
|
arrow_length * math.sin(left_yaw),
|
||||||
|
head_width=0.03, head_length=0.03, fc='b', ec='b')
|
||||||
|
ax.arrow(right_x, right_y,
|
||||||
|
arrow_length * math.cos(right_yaw),
|
||||||
|
arrow_length * math.sin(right_yaw),
|
||||||
|
head_width=0.03, head_length=0.03, fc='r', ec='r')
|
||||||
|
|
||||||
|
ax.legend()
|
||||||
|
plt.pause(0.001)
|
||||||
|
time.sleep(0.1)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("Test terminated by user.")
|
||||||
|
finally:
|
||||||
|
plt.ioff()
|
||||||
|
plt.show()
|
|
@ -0,0 +1,226 @@
|
||||||
|
import numpy as np
|
||||||
|
from geometry_msgs.msg import Vector3, Quaternion
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
def to_array(v):
|
||||||
|
if isinstance(v, Vector3):
|
||||||
|
return np.array([v.x, v.y, v.z], dtype=np.float32)
|
||||||
|
elif isinstance(v, Quaternion):
|
||||||
|
return np.array([v.x, v.y, v.z, v.w], dtype=np.float32)
|
||||||
|
|
||||||
|
|
||||||
|
def normalize(x: np.ndarray, eps: float = 1e-9) -> np.ndarray:
|
||||||
|
"""Normalizes a given input tensor to unit length.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Input tensor of shape (N, dims).
|
||||||
|
eps: A small value to avoid division by zero. Defaults to 1e-9.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Normalized tensor of shape (N, dims).
|
||||||
|
"""
|
||||||
|
return x / np.linalg.norm(x, ord=2, axis=-1, keepdims=True).clip(min=eps, max=None)
|
||||||
|
|
||||||
|
def yaw_quat(quat: np.ndarray) -> np.ndarray:
|
||||||
|
"""Extract the yaw component of a quaternion.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
quat: The orientation in (w, x, y, z). Shape is (..., 4)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A quaternion with only yaw component.
|
||||||
|
"""
|
||||||
|
shape = quat.shape
|
||||||
|
quat_yaw = quat.copy().reshape(-1, 4)
|
||||||
|
qw = quat_yaw[:, 0]
|
||||||
|
qx = quat_yaw[:, 1]
|
||||||
|
qy = quat_yaw[:, 2]
|
||||||
|
qz = quat_yaw[:, 3]
|
||||||
|
yaw = np.arctan2(2 * (qw * qz + qx * qy), 1 - 2 * (qy * qy + qz * qz))
|
||||||
|
quat_yaw[:] = 0.0
|
||||||
|
quat_yaw[:, 3] = np.sin(yaw / 2)
|
||||||
|
quat_yaw[:, 0] = np.cos(yaw / 2)
|
||||||
|
quat_yaw = normalize(quat_yaw)
|
||||||
|
return quat_yaw.reshape(shape)
|
||||||
|
|
||||||
|
def quat_conjugate(q: np.ndarray) -> np.ndarray:
|
||||||
|
"""Computes the conjugate of a quaternion.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
q: The quaternion orientation in (w, x, y, z). Shape is (..., 4).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The conjugate quaternion in (w, x, y, z). Shape is (..., 4).
|
||||||
|
"""
|
||||||
|
shape = q.shape
|
||||||
|
q = q.reshape(-1, 4)
|
||||||
|
return np.concatenate((q[:, 0:1], -q[:, 1:]), dim=-1).reshape(shape)
|
||||||
|
|
||||||
|
|
||||||
|
def quat_inv(q: np.ndarray) -> np.ndarray:
|
||||||
|
"""Compute the inverse of a quaternion.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
q: The quaternion orientation in (w, x, y, z). Shape is (N, 4).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The inverse quaternion in (w, x, y, z). Shape is (N, 4).
|
||||||
|
"""
|
||||||
|
return normalize(quat_conjugate(q))
|
||||||
|
|
||||||
|
def quat_mul(q1: np.ndarray, q2: np.ndarray) -> np.ndarray:
|
||||||
|
"""Multiply two quaternions together.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
q1: The first quaternion in (w, x, y, z). Shape is (..., 4).
|
||||||
|
q2: The second quaternion in (w, x, y, z). Shape is (..., 4).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The product of the two quaternions in (w, x, y, z). Shape is (..., 4).
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: Input shapes of ``q1`` and ``q2`` are not matching.
|
||||||
|
"""
|
||||||
|
# check input is correct
|
||||||
|
if q1.shape != q2.shape:
|
||||||
|
msg = f"Expected input quaternion shape mismatch: {q1.shape} != {q2.shape}."
|
||||||
|
raise ValueError(msg)
|
||||||
|
# reshape to (N, 4) for multiplication
|
||||||
|
shape = q1.shape
|
||||||
|
q1 = q1.reshape(-1, 4)
|
||||||
|
q2 = q2.reshape(-1, 4)
|
||||||
|
# extract components from quaternions
|
||||||
|
w1, x1, y1, z1 = q1[:, 0], q1[:, 1], q1[:, 2], q1[:, 3]
|
||||||
|
w2, x2, y2, z2 = q2[:, 0], q2[:, 1], q2[:, 2], q2[:, 3]
|
||||||
|
# perform multiplication
|
||||||
|
ww = (z1 + x1) * (x2 + y2)
|
||||||
|
yy = (w1 - y1) * (w2 + z2)
|
||||||
|
zz = (w1 + y1) * (w2 - z2)
|
||||||
|
xx = ww + yy + zz
|
||||||
|
qq = 0.5 * (xx + (z1 - x1) * (x2 - y2))
|
||||||
|
w = qq - ww + (z1 - y1) * (y2 - z2)
|
||||||
|
x = qq - xx + (x1 + w1) * (x2 + w2)
|
||||||
|
y = qq - yy + (w1 - x1) * (y2 + z2)
|
||||||
|
z = qq - zz + (z1 + y1) * (w2 - x2)
|
||||||
|
|
||||||
|
return np.stack([w, x, y, z], axis=-1).reshape(shape)
|
||||||
|
|
||||||
|
def quat_apply(quat: np.ndarray, vec: np.ndarray) -> np.ndarray:
|
||||||
|
"""Apply a quaternion rotation to a vector.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
quat: The quaternion in (w, x, y, z). Shape is (..., 4).
|
||||||
|
vec: The vector in (x, y, z). Shape is (..., 3).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The rotated vector in (x, y, z). Shape is (..., 3).
|
||||||
|
"""
|
||||||
|
# store shape
|
||||||
|
shape = vec.shape
|
||||||
|
# reshape to (N, 3) for multiplication
|
||||||
|
quat = quat.reshape(-1, 4)
|
||||||
|
vec = vec.reshape(-1, 3)
|
||||||
|
# extract components from quaternions
|
||||||
|
xyz = quat[:, 1:]
|
||||||
|
t = np.cross(xyz, vec, axis=-1) * 2
|
||||||
|
return (vec + quat[:, 0:1] * t + np.cross(xyz, t, axis=-1)).reshape(shape)
|
||||||
|
|
||||||
|
def subtract_frame_transforms(
|
||||||
|
t01: np.ndarray, q01: np.ndarray,
|
||||||
|
t02: Optional[np.ndarray] = None,
|
||||||
|
q02: Optional[np.ndarray] = None
|
||||||
|
) -> Tuple[np.ndarray, np.ndarray]:
|
||||||
|
r"""Subtract transformations between two reference frames into a stationary frame.
|
||||||
|
|
||||||
|
It performs the following transformation operation: :math:`T_{12} = T_{01}^{-1} \times T_{02}`,
|
||||||
|
where :math:`T_{AB}` is the homogeneous transformation matrix from frame A to B.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
t01: Position of frame 1 w.r.t. frame 0. Shape is (N, 3).
|
||||||
|
q01: Quaternion orientation of frame 1 w.r.t. frame 0 in (w, x, y, z). Shape is (N, 4).
|
||||||
|
t02: Position of frame 2 w.r.t. frame 0. Shape is (N, 3).
|
||||||
|
Defaults to None, in which case the position is assumed to be zero.
|
||||||
|
q02: Quaternion orientation of frame 2 w.r.t. frame 0 in (w, x, y, z). Shape is (N, 4).
|
||||||
|
Defaults to None, in which case the orientation is assumed to be identity.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tuple containing the position and orientation of frame 2 w.r.t. frame 1.
|
||||||
|
Shape of the tensors are (N, 3) and (N, 4) respectively.
|
||||||
|
"""
|
||||||
|
# compute orientation
|
||||||
|
q10 = quat_inv(q01)
|
||||||
|
if q02 is not None:
|
||||||
|
q12 = quat_mul(q10, q02)
|
||||||
|
else:
|
||||||
|
q12 = q10
|
||||||
|
# compute translation
|
||||||
|
if t02 is not None:
|
||||||
|
t12 = quat_apply(q10, t02 - t01)
|
||||||
|
else:
|
||||||
|
t12 = quat_apply(q10, -t01)
|
||||||
|
return t12, q12
|
||||||
|
|
||||||
|
def compute_pose_error(t01: np.ndarray,
|
||||||
|
q01: np.ndarray,
|
||||||
|
t02: np.ndarray,
|
||||||
|
q02: np.ndarray,
|
||||||
|
return_type='axa') -> Tuple[np.ndarray, np.ndarray]:
|
||||||
|
q10 = quat_inv(q01)
|
||||||
|
quat_error = quat_mul(q02, q10)
|
||||||
|
pos_error = t02-t01
|
||||||
|
if return_type == 'axa':
|
||||||
|
quat_error = axis_angle_from_quat(quat_error)
|
||||||
|
return pos_error, quat_error
|
||||||
|
|
||||||
|
|
||||||
|
def axis_angle_from_quat(quat: np.ndarray, eps: float = 1.0e-6) -> np.ndarray:
|
||||||
|
"""Convert rotations given as quaternions to axis/angle.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
quat: The quaternion orientation in (w, x, y, z). Shape is (..., 4).
|
||||||
|
eps: The tolerance for Taylor approximation. Defaults to 1.0e-6.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Rotations given as a vector in axis angle form. Shape is (..., 3).
|
||||||
|
The vector's magnitude is the angle turned anti-clockwise in radians around the vector's direction.
|
||||||
|
|
||||||
|
Reference:
|
||||||
|
https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554
|
||||||
|
"""
|
||||||
|
# Modified to take in quat as [q_w, q_x, q_y, q_z]
|
||||||
|
# Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)]
|
||||||
|
# Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z]
|
||||||
|
# Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta)
|
||||||
|
# When theta = 0, (sin(theta/2) / theta) is undefined
|
||||||
|
# However, as theta --> 0, we can use the Taylor approximation 1/2 - theta^2 / 48
|
||||||
|
quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0))
|
||||||
|
mag = np.linalg.norm(quat[..., 1:], dim=-1)
|
||||||
|
half_angle = torch.arctan2(mag, quat[..., 0])
|
||||||
|
angle = 2.0 * half_angle
|
||||||
|
# check whether to apply Taylor approximation
|
||||||
|
sin_half_angles_over_angles = np.where(
|
||||||
|
angle.abs() > eps, np.sin(half_angle) / angle, 0.5 - angle * angle / 48
|
||||||
|
)
|
||||||
|
return quat[..., 1:4] / sin_half_angles_over_angles.unsqueeze(-1)
|
||||||
|
|
||||||
|
def wrap_to_pi(angles: np.ndarray) -> np.ndarray:
|
||||||
|
r"""Wraps input angles (in radians) to the range :math:`[-\pi, \pi]`.
|
||||||
|
|
||||||
|
This function wraps angles in radians to the range :math:`[-\pi, \pi]`, such that
|
||||||
|
:math:`\pi` maps to :math:`\pi`, and :math:`-\pi` maps to :math:`-\pi`. In general,
|
||||||
|
odd positive multiples of :math:`\pi` are mapped to :math:`\pi`, and odd negative
|
||||||
|
multiples of :math:`\pi` are mapped to :math:`-\pi`.
|
||||||
|
|
||||||
|
The function behaves similar to MATLAB's `wrapToPi <https://www.mathworks.com/help/map/ref/wraptopi.html>`_
|
||||||
|
function.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
angles: Input angles of any shape.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Angles in the range :math:`[-\pi, \pi]`.
|
||||||
|
"""
|
||||||
|
# wrap to [0, 2*pi)
|
||||||
|
wrapped_angle = (angles + np.pi) % (2 * np.pi)
|
||||||
|
# map to [-pi, pi]
|
||||||
|
# we check for zero in wrapped angle to make it go to pi when input angle is odd multiple of pi
|
||||||
|
return np.where((wrapped_angle == 0) & (angles > 0), np.pi, wrapped_angle - np.pi)
|
|
@ -0,0 +1,519 @@
|
||||||
|
from legged_gym import LEGGED_GYM_ROOT_DIR
|
||||||
|
from typing import Union
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
|
||||||
|
import rclpy as rp
|
||||||
|
|
||||||
|
from unitree_sdk2py.core.channel import ChannelPublisher, ChannelFactoryInitialize
|
||||||
|
from unitree_sdk2py.core.channel import ChannelSubscriber, ChannelFactoryInitialize
|
||||||
|
from unitree_sdk2py.idl.default import unitree_hg_msg_dds__LowCmd_, unitree_hg_msg_dds__LowState_
|
||||||
|
from unitree_sdk2py.idl.default import unitree_go_msg_dds__LowCmd_, unitree_go_msg_dds__LowState_
|
||||||
|
from unitree_sdk2py.idl.unitree_hg.msg.dds_ import LowCmd_ as LowCmdHG
|
||||||
|
from unitree_sdk2py.idl.unitree_go.msg.dds_ import LowCmd_ as LowCmdGo
|
||||||
|
from unitree_sdk2py.idl.unitree_hg.msg.dds_ import LowState_ as LowStateHG
|
||||||
|
from unitree_sdk2py.idl.unitree_go.msg.dds_ import LowState_ as LowStateGo
|
||||||
|
from unitree_sdk2py.utils.crc import CRC
|
||||||
|
|
||||||
|
from common.command_helper import create_damping_cmd, create_zero_cmd, init_cmd_hg, init_cmd_go, MotorMode
|
||||||
|
from common.rotation_helper import get_gravity_orientation, transform_imu_data
|
||||||
|
from common.remote_controller import RemoteController, KeyMap
|
||||||
|
from common.step_command import StepCommand
|
||||||
|
from common.utils import (to_array, normalize, yaw_quat,
|
||||||
|
axis_angle_from_quat,
|
||||||
|
subtract_frame_transforms,
|
||||||
|
wrap_to_pi,
|
||||||
|
compute_pose_error
|
||||||
|
)
|
||||||
|
from config import Config
|
||||||
|
|
||||||
|
from tf2_ros.buffer import Buffer
|
||||||
|
from tf2_ros.transform_listener import TransformListener
|
||||||
|
from tf2_ros import TransformBroadcaster, TransformStamped, StaticTransformBroadcaster
|
||||||
|
|
||||||
|
isaaclab_joint_order = [
|
||||||
|
'left_hip_pitch_joint',
|
||||||
|
'right_hip_pitch_joint',
|
||||||
|
'waist_yaw_joint',
|
||||||
|
'left_hip_roll_joint',
|
||||||
|
'right_hip_roll_joint',
|
||||||
|
'waist_roll_joint',
|
||||||
|
'left_hip_yaw_joint',
|
||||||
|
'right_hip_yaw_joint',
|
||||||
|
'waist_pitch_joint',
|
||||||
|
'left_knee_joint',
|
||||||
|
'right_knee_joint',
|
||||||
|
'left_shoulder_pitch_joint',
|
||||||
|
'right_shoulder_pitch_joint',
|
||||||
|
'left_ankle_pitch_joint',
|
||||||
|
'right_ankle_pitch_joint',
|
||||||
|
'left_shoulder_roll_joint',
|
||||||
|
'right_shoulder_roll_joint',
|
||||||
|
'left_ankle_roll_joint',
|
||||||
|
'right_ankle_roll_joint',
|
||||||
|
'left_shoulder_yaw_joint',
|
||||||
|
'right_shoulder_yaw_joint',
|
||||||
|
'left_elbow_joint',
|
||||||
|
'right_elbow_joint',
|
||||||
|
'left_wrist_roll_joint',
|
||||||
|
'right_wrist_roll_joint',
|
||||||
|
'left_wrist_pitch_joint',
|
||||||
|
'right_wrist_pitch_joint',
|
||||||
|
'left_wrist_yaw_joint',
|
||||||
|
'right_wrist_yaw_joint'
|
||||||
|
]
|
||||||
|
|
||||||
|
raw_joint_order = [
|
||||||
|
'left_hip_pitch_joint',
|
||||||
|
'left_hip_roll_joint',
|
||||||
|
'left_hip_yaw_joint',
|
||||||
|
'left_knee_joint',
|
||||||
|
'left_ankle_pitch_joint',
|
||||||
|
'left_ankle_roll_joint',
|
||||||
|
'right_hip_pitch_joint',
|
||||||
|
'right_hip_roll_joint',
|
||||||
|
'right_hip_yaw_joint',
|
||||||
|
'right_knee_joint',
|
||||||
|
'right_ankle_pitch_joint',
|
||||||
|
'right_ankle_roll_joint',
|
||||||
|
'waist_yaw_joint',
|
||||||
|
'waist_roll_joint',
|
||||||
|
'waist_pitch_joint',
|
||||||
|
'left_shoulder_pitch_joint',
|
||||||
|
'left_shoulder_roll_joint',
|
||||||
|
'left_shoulder_yaw_joint',
|
||||||
|
'left_elbow_joint',
|
||||||
|
'left_wrist_roll_joint',
|
||||||
|
'left_wrist_pitch_joint',
|
||||||
|
'left_wrist_yaw_joint',
|
||||||
|
'right_shoulder_pitch_joint',
|
||||||
|
'right_shoulder_roll_joint',
|
||||||
|
'right_shoulder_yaw_joint',
|
||||||
|
'right_elbow_joint',
|
||||||
|
'right_wrist_roll_joint',
|
||||||
|
'right_wrist_pitch_joint',
|
||||||
|
'right_wrist_yaw_joint'
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create a mapping tensor
|
||||||
|
# mapping_tensor = torch.zeros((len(sim_b_joints), len(sim_a_joints)), device=env.device)
|
||||||
|
mapping_tensor = torch.zeros((len(raw_joint_order), len(isaaclab_joint_order)))
|
||||||
|
|
||||||
|
# Fill the mapping tensor
|
||||||
|
for b_idx, b_joint in enumerate(raw_joint_order):
|
||||||
|
if b_joint in isaaclab_joint_order:
|
||||||
|
a_idx = isaaclab_joint_order.index(b_joint)
|
||||||
|
mapping_tensor[a_idx, b_idx] = 1.0
|
||||||
|
|
||||||
|
class Controller:
|
||||||
|
def __init__(self, config: Config) -> None:
|
||||||
|
self.config = config
|
||||||
|
self.remote_controller = RemoteController()
|
||||||
|
|
||||||
|
# Initialize the policy network
|
||||||
|
self.policy = torch.jit.load(config.policy_path)
|
||||||
|
# Initializing process variables
|
||||||
|
self.qj = np.zeros(config.num_actions, dtype=np.float32)
|
||||||
|
self.dqj = np.zeros(config.num_actions, dtype=np.float32)
|
||||||
|
self.action = np.zeros(config.num_actions, dtype=np.float32)
|
||||||
|
self.target_dof_pos = config.default_angles.copy()
|
||||||
|
self.obs = np.zeros(config.num_obs, dtype=np.float32)
|
||||||
|
self.cmd = np.array([0.0, 0, 0])
|
||||||
|
self.counter = 0
|
||||||
|
|
||||||
|
rp.init()
|
||||||
|
self._node = rp.create_node("low_level_cmd_sender")
|
||||||
|
|
||||||
|
self.tf_buffer = Buffer()
|
||||||
|
self.tf_listener = TransformListener(self.tf_buffer, self._node)
|
||||||
|
self.tf_broadcaster = TransformBroadcaster(self._node)
|
||||||
|
|
||||||
|
self._step_command = None
|
||||||
|
self._saved = False
|
||||||
|
|
||||||
|
if config.msg_type == "hg":
|
||||||
|
# g1 and h1_2 use the hg msg type
|
||||||
|
self.low_cmd = unitree_hg_msg_dds__LowCmd_()
|
||||||
|
self.low_state = unitree_hg_msg_dds__LowState_()
|
||||||
|
self.mode_pr_ = MotorMode.PR
|
||||||
|
self.mode_machine_ = 0
|
||||||
|
|
||||||
|
self.lowcmd_publisher_ = ChannelPublisher(config.lowcmd_topic, LowCmdHG)
|
||||||
|
self.lowcmd_publisher_.Init()
|
||||||
|
|
||||||
|
self.lowstate_subscriber = ChannelSubscriber(config.lowstate_topic, LowStateHG)
|
||||||
|
self.lowstate_subscriber.Init(self.LowStateHgHandler, 10)
|
||||||
|
|
||||||
|
elif config.msg_type == "go":
|
||||||
|
# h1 uses the go msg type
|
||||||
|
self.low_cmd = unitree_go_msg_dds__LowCmd_()
|
||||||
|
self.low_state = unitree_go_msg_dds__LowState_()
|
||||||
|
|
||||||
|
self.lowcmd_publisher_ = ChannelPublisher(config.lowcmd_topic, LowCmdGo)
|
||||||
|
self.lowcmd_publisher_.Init()
|
||||||
|
|
||||||
|
self.lowstate_subscriber = ChannelSubscriber(config.lowstate_topic, LowStateGo)
|
||||||
|
self.lowstate_subscriber.Init(self.LowStateGoHandler, 10)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid msg_type")
|
||||||
|
|
||||||
|
# wait for the subscriber to receive data
|
||||||
|
self.wait_for_low_state()
|
||||||
|
|
||||||
|
# Initialize the command msg
|
||||||
|
if config.msg_type == "hg":
|
||||||
|
init_cmd_hg(self.low_cmd, self.mode_machine_, self.mode_pr_)
|
||||||
|
elif config.msg_type == "go":
|
||||||
|
init_cmd_go(self.low_cmd, weak_motor=self.config.weak_motor)
|
||||||
|
|
||||||
|
def LowStateHgHandler(self, msg: LowStateHG):
|
||||||
|
self.low_state = msg
|
||||||
|
self.mode_machine_ = self.low_state.mode_machine
|
||||||
|
self.remote_controller.set(self.low_state.wireless_remote)
|
||||||
|
|
||||||
|
def LowStateGoHandler(self, msg: LowStateGo):
|
||||||
|
self.low_state = msg
|
||||||
|
self.remote_controller.set(self.low_state.wireless_remote)
|
||||||
|
|
||||||
|
def send_cmd(self, cmd: Union[LowCmdGo, LowCmdHG]):
|
||||||
|
cmd.crc = CRC().Crc(cmd)
|
||||||
|
self.lowcmd_publisher_.Write(cmd)
|
||||||
|
|
||||||
|
def wait_for_low_state(self):
|
||||||
|
while self.low_state.tick == 0:
|
||||||
|
time.sleep(self.config.control_dt)
|
||||||
|
print("Successfully connected to the robot.")
|
||||||
|
|
||||||
|
def zero_torque_state(self):
|
||||||
|
print("Enter zero torque state.")
|
||||||
|
print("Waiting for the start signal...")
|
||||||
|
while self.remote_controller.button[KeyMap.start] != 1:
|
||||||
|
create_zero_cmd(self.low_cmd)
|
||||||
|
self.send_cmd(self.low_cmd)
|
||||||
|
time.sleep(self.config.control_dt)
|
||||||
|
|
||||||
|
def move_to_default_pos(self):
|
||||||
|
print("Moving to default pos.")
|
||||||
|
# move time 2s
|
||||||
|
total_time = 2
|
||||||
|
num_step = int(total_time / self.config.control_dt)
|
||||||
|
|
||||||
|
# dof_idx = self.config.leg_joint2motor_idx + self.config.arm_waist_joint2motor_idx
|
||||||
|
# kps = self.config.kps + self.config.arm_waist_kps
|
||||||
|
# kds = self.config.kds + self.config.arm_waist_kds
|
||||||
|
# default_pos = np.concatenate((self.config.default_angles, self.config.arm_waist_target), axis=0)
|
||||||
|
dof_idx = self.config.joint2motor_idx
|
||||||
|
kps = self.config.kps
|
||||||
|
kds = self.config.kds
|
||||||
|
default_pos = self.config.default_angles
|
||||||
|
dof_size = len(dof_idx)
|
||||||
|
|
||||||
|
# record the current pos
|
||||||
|
init_dof_pos = np.zeros(dof_size, dtype=np.float32)
|
||||||
|
for i in range(dof_size):
|
||||||
|
init_dof_pos[i] = self.low_state.motor_state[dof_idx[i]].q
|
||||||
|
|
||||||
|
# move to default pos
|
||||||
|
for i in range(num_step):
|
||||||
|
alpha = i / num_step
|
||||||
|
for j in range(dof_size):
|
||||||
|
motor_idx = dof_idx[j]
|
||||||
|
target_pos = default_pos[j]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].q = init_dof_pos[j] * (1 - alpha) + target_pos * alpha
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kp = kps[j]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kd = kds[j]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
self.send_cmd(self.low_cmd)
|
||||||
|
time.sleep(self.config.control_dt)
|
||||||
|
|
||||||
|
def default_pos_state(self):
|
||||||
|
print("Enter default pos state.")
|
||||||
|
print("Waiting for the Button A signal...")
|
||||||
|
while self.remote_controller.button[KeyMap.A] != 1:
|
||||||
|
# for i in range(len(self.config.leg_joint2motor_idx)):
|
||||||
|
# motor_idx = self.config.leg_joint2motor_idx[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].q = self.config.default_angles[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
# for i in range(len(self.config.arm_waist_joint2motor_idx)):
|
||||||
|
# motor_idx = self.config.arm_waist_joint2motor_idx[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].q = self.config.arm_waist_target[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kp = self.config.arm_waist_kps[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kd = self.config.arm_waist_kds[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
for i in range(len(self.config.joint2motor_idx)):
|
||||||
|
motor_idx = self.config.joint2motor_idx[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].q = self.config.default_angles[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
self.send_cmd(self.low_cmd)
|
||||||
|
time.sleep(self.config.control_dt)
|
||||||
|
|
||||||
|
def tf_to_pose(self, tf, order='xyzw'):
|
||||||
|
pos = to_array(tf.transform.translation)
|
||||||
|
quat = to_array(tf.transform.rotation)
|
||||||
|
if order == 'wxyz':
|
||||||
|
quat = np.roll(quat, 1, axis=-1)
|
||||||
|
return np.concatenate((pos, quat), axis=0)
|
||||||
|
|
||||||
|
def publish_step_command(self, next_ctarget_left, next_ctarget_right):
|
||||||
|
left_tf = TransformStamped()
|
||||||
|
left_tf.header.stamp = self._node.get_clock().now().to_msg()
|
||||||
|
left_tf.header.frame_id = 'world'
|
||||||
|
left_tf.child_frame_id = 'left_ctarget'
|
||||||
|
left_tf.transform.translation.x = next_ctarget_left[0]
|
||||||
|
left_tf.transform.translation.y = next_ctarget_left[1]
|
||||||
|
left_tf.transform.translation.z = next_ctarget_left[2]
|
||||||
|
|
||||||
|
left_tf.transform.rotation.x = next_ctarget_left[4]
|
||||||
|
left_tf.transform.rotation.y = next_ctarget_left[5]
|
||||||
|
left_tf.transform.rotation.z = next_ctarget_left[6]
|
||||||
|
left_tf.transform.rotation.w = next_ctarget_left[3]
|
||||||
|
|
||||||
|
right_tf = TransformStamped()
|
||||||
|
right_tf.header.stamp = left_tf.header.stamp
|
||||||
|
right_tf.header.frame_id = 'world'
|
||||||
|
right_tf.child_frame_id = 'right_ctarget'
|
||||||
|
right_tf.transform.translation.x = next_ctarget_right[0]
|
||||||
|
right_tf.transform.translation.y = next_ctarget_right[1]
|
||||||
|
right_tf.transform.translation.z = next_ctarget_right[2]
|
||||||
|
|
||||||
|
right_tf.transform.rotation.x = next_ctarget_right[4]
|
||||||
|
right_tf.transform.rotation.y = next_ctarget_right[5]
|
||||||
|
right_tf.transform.rotation.z = next_ctarget_right[6]
|
||||||
|
right_tf.transform.rotation.w = next_ctarget_right[3]
|
||||||
|
|
||||||
|
self.tf_broadcaster.sendTransform(left_tf)
|
||||||
|
self.tf_broadcaster.sendTransform(right_tf)
|
||||||
|
|
||||||
|
def get_command(self, pelvis_w,
|
||||||
|
foot_left_b,
|
||||||
|
foot_right_b,
|
||||||
|
ctarget_left_w,
|
||||||
|
ctarget_right_w):
|
||||||
|
ctarget_left_b_pos, ctarget_left_b_quat = subtract_frame_transforms(pelvis_w[:3],
|
||||||
|
pelvis_w[3:7],
|
||||||
|
ctarget_left_w[:3],
|
||||||
|
ctarget_left_w[3:7])
|
||||||
|
ctarget_right_b_pos, ctarget_right_b_quat = subtract_frame_transforms(pelvis_w[:3],
|
||||||
|
pelvis_w[3:7],
|
||||||
|
ctarget_right_w[:3],
|
||||||
|
ctarget_right_w[3:7])
|
||||||
|
pos_delta_left, axa_delta_left = compute_pose_error(foot_left_b[:3],
|
||||||
|
foot_left_b[3:7],
|
||||||
|
ctarget_left_b_pos,
|
||||||
|
ctarget_left_b_quat)
|
||||||
|
pos_delta_right, axa_delta_right = compute_pose_error(foot_right_b[:3],
|
||||||
|
foot_right_b[3:7],
|
||||||
|
ctarget_right_b_pos,
|
||||||
|
ctarget_right_b_quat)
|
||||||
|
return np.concatenate((pos_delta_left, axa_delta_left, pos_delta_right, axa_delta_right), axis=0)
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
if self._step_command is None:
|
||||||
|
|
||||||
|
current_left_tf = self.tf_buffer.lookup_transform("world",
|
||||||
|
"left_foot", rclpy.time.Time())
|
||||||
|
current_left_pose = self.tf_to_pose(current_left_tf, 'wxyz')
|
||||||
|
current_left_pose[2] = 0.0
|
||||||
|
current_left_pose[3:7] = yaw_quat(current_left_pose[3:7])
|
||||||
|
current_right_tf = self.tf_buffer.lookup_transform("world",
|
||||||
|
"right_foot", rclpy.time.Time())
|
||||||
|
current_right_pose = self.tf_to_pose(current_right_tf, 'wxyz')
|
||||||
|
current_right_pose[2] = 0.0
|
||||||
|
current_right_pose[3:7] = yaw_quat(current_right_pose[3:7])
|
||||||
|
self._step_command = StepCommand(current_left_pose, current_right_pose)
|
||||||
|
|
||||||
|
self.counter += 1
|
||||||
|
next_ctarget = self._step_command.get_next_ctarget(
|
||||||
|
self.remote_controller,
|
||||||
|
self.counter * self.config.control_dt)
|
||||||
|
next_ctarget_left, next_ctarget_right, dt_left, dt_right = next_ctarget
|
||||||
|
self.publish_step_command(next_ctarget_left, next_ctarget_right)
|
||||||
|
|
||||||
|
# Get the current joint position and velocity
|
||||||
|
# for i in range(len(self.config.leg_joint2motor_idx)):
|
||||||
|
# self.qj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].q
|
||||||
|
# self.dqj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].dq
|
||||||
|
for i, motor_idx in enumerate(self.config.joint2motor_idx):
|
||||||
|
self.qj[i] = self.low_state.motor_state[motor_idx].q
|
||||||
|
self.dqj[i] = self.low_state.motor_state[motor_idx].dq
|
||||||
|
|
||||||
|
|
||||||
|
# imu_state quaternion: w, x, y, z
|
||||||
|
quat = self.low_state.imu_state.quaternion
|
||||||
|
ang_vel = np.array([self.low_state.imu_state.gyroscope], dtype=np.float32)
|
||||||
|
|
||||||
|
if self.config.imu_type == "torso":
|
||||||
|
# h1 and h1_2 imu is on the torso
|
||||||
|
# imu data needs to be transformed to the pelvis frame
|
||||||
|
# waist_yaw = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].q
|
||||||
|
# waist_yaw_omega = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].dq
|
||||||
|
waist_yaw = self.low_state.motor_state[self.config.joint2motor_idx[12]].q
|
||||||
|
waist_yaw_omega = self.low_state.motor_state[self.config.joint2motor_idx[12]].dq
|
||||||
|
|
||||||
|
quat, ang_vel = transform_imu_data(waist_yaw=waist_yaw, waist_yaw_omega=waist_yaw_omega, imu_quat=quat, imu_omega=ang_vel)
|
||||||
|
|
||||||
|
# create observation
|
||||||
|
gravity_orientation = get_gravity_orientation(quat)
|
||||||
|
qj_obs = self.qj.copy()
|
||||||
|
dqj_obs = self.dqj.copy()
|
||||||
|
qj_obs = (qj_obs - self.config.default_angles) * self.config.dof_pos_scale
|
||||||
|
dqj_obs = dqj_obs * self.config.dof_vel_scale
|
||||||
|
ang_vel = ang_vel * self.config.ang_vel_scale
|
||||||
|
|
||||||
|
# foot pose
|
||||||
|
left_foot_from_base_tf = self.tf_buffer.lookup_transform("pelvis",
|
||||||
|
"left_ankle_roll_link",
|
||||||
|
rclpy.time.Time())
|
||||||
|
right_foot_from_base_tf = self.tf_buffer.lookup_transform("pelvis",
|
||||||
|
"right_ankle_roll_link",
|
||||||
|
rclpy.time.Time())
|
||||||
|
lf_b = self.tf_to_pose(left_foot_from_base_tf, 'wxyz')
|
||||||
|
rf_b = self.tf_to_pose(right_foot_from_base_tf, 'wxyz')
|
||||||
|
left_foot_axa = wrap_to_pi(axis_angle_from_quat(lf_b[3:7]))
|
||||||
|
right_foot_axa = wrap_to_pi(axis_angle_from_quat(rf_b[3:7]))
|
||||||
|
rel_foot = np.concatenate((left_foot_from_base[:3],
|
||||||
|
right_foot_from_base[:3],
|
||||||
|
left_foot_axa,
|
||||||
|
right_foot_axa), axis=0)
|
||||||
|
# hand pose
|
||||||
|
left_hand_from_base_tf = self.tf_buffer.lookup_transform("pelvis",
|
||||||
|
"left_rubber_hand",
|
||||||
|
rclpy.time.Time())
|
||||||
|
right_hand_from_base_tf = self.tf_buffer.lookup_transform("pelvis",
|
||||||
|
"right_rubber_hand",
|
||||||
|
rclpy.time.Time())
|
||||||
|
left_hand_from_base = self.tf_to_pose(left_hand_from_base_tf, 'wxyz')
|
||||||
|
right_hand_from_base = self.tf_to_pose(right_hand_from_base_tf, 'wxyz')
|
||||||
|
left_hand_axa = wrap_to_pi(axis_angle_from_quat(left_hand_from_base[3:7]))
|
||||||
|
right_hand_axa = wrap_to_pi(axis_angle_from_quat(right_hand_from_base[3:7]))
|
||||||
|
rel_hand = np.concatenate((left_hand_from_base[:3],
|
||||||
|
right_hand_from_base[:3],
|
||||||
|
left_hand_axa,
|
||||||
|
right_hand_axa), axis=0)
|
||||||
|
# foot command
|
||||||
|
base_pose_w = self.tf_to_pose(self.tf_buffer.lookup_transform("world", "pelvis",
|
||||||
|
rclpy.time.Time()), 'wxyz')
|
||||||
|
step_command = self.get_command(base_pose_w,
|
||||||
|
lf_b,
|
||||||
|
rf_b,
|
||||||
|
ctarget_left_w,
|
||||||
|
ctarget_right_w)
|
||||||
|
step_command = np.concatenate((step_command, dt_left, dt_right), axis=0)
|
||||||
|
|
||||||
|
num_actions = self.config.num_actions
|
||||||
|
self.obs[:3] = ang_vel
|
||||||
|
self.obs[3:6] = gravity_orientation
|
||||||
|
# self.obs[6:9] = self.cmd * self.config.cmd_scale * self.config.max_cmd
|
||||||
|
self.obs[6:18] = rel_foot
|
||||||
|
self.obs[18:30] = rel_hand
|
||||||
|
self.obs[30 : 30 + num_actions] = qj_obs
|
||||||
|
self.obs[30 + num_actions : 30 + num_actions * 2] = dqj_obs
|
||||||
|
self.obs[30 + num_actions * 2 : 30 + num_actions * 3] = self.action
|
||||||
|
self.obs[30 + num_actions * 3 : 30 + num_actions * 3 + 14] = step_command
|
||||||
|
# self.obs[9 + num_actions * 3] = sin_phase
|
||||||
|
# self.obs[9 + num_actions * 3 + 1] = cos_phase
|
||||||
|
|
||||||
|
# Get the action from the policy network
|
||||||
|
obs_tensor = torch.from_numpy(self.obs).unsqueeze(0)
|
||||||
|
|
||||||
|
# Reorder the observations
|
||||||
|
obs_tensor[..., 30:30+num_actions] = obs_tensor[..., 30:30+num_actions] @ mapping_tensor.transpose(0, 1)
|
||||||
|
obs_tensor[..., 30 + num_actions : 30 + num_actions * 2] = obs_tensor[..., 30 + num_actions : 30 + num_actions * 2] @ mapping_tensor.transpose(0, 1)
|
||||||
|
obs_tensor[..., 30 + num_actions * 2 : 30 + num_actions * 3] = obs_tensor[..., 30 + num_actions * 2 : 30 + num_actions * 3] @ mapping_tensor.transpose(0, 1)
|
||||||
|
|
||||||
|
if not self._saved:
|
||||||
|
torch.save(obs_tensor, "obs.pt")
|
||||||
|
self._saved = True
|
||||||
|
|
||||||
|
self.action = self.policy(obs_tensor).detach().numpy().squeeze()
|
||||||
|
|
||||||
|
# Reorder the actions
|
||||||
|
self.action = self.action @ mapping_tensor.detach().cpu().numpy()
|
||||||
|
|
||||||
|
# transform action to target_dof_pos
|
||||||
|
target_dof_pos = self.config.default_angles + self.action * self.config.action_scale
|
||||||
|
|
||||||
|
# Build low cmd
|
||||||
|
# for i in range(len(self.config.leg_joint2motor_idx)):
|
||||||
|
# motor_idx = self.config.leg_joint2motor_idx[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].q = target_dof_pos[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
|
||||||
|
# for i in range(len(self.config.arm_waist_joint2motor_idx)):
|
||||||
|
# motor_idx = self.config.arm_waist_joint2motor_idx[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].q = self.config.arm_waist_target[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kp = self.config.arm_waist_kps[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].kd = self.config.arm_waist_kds[i]
|
||||||
|
# self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
if False:
|
||||||
|
for i, motor_idx in enumerate(self.config.joint2motor_idx):
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].q = target_dof_pos[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].qd = 0
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
|
||||||
|
self.low_cmd.motor_cmd[motor_idx].tau = 0
|
||||||
|
|
||||||
|
|
||||||
|
# send the command
|
||||||
|
self.send_cmd(self.low_cmd)
|
||||||
|
|
||||||
|
time.sleep(self.config.control_dt)
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
self._node.destroy_node()
|
||||||
|
rp.shutdown()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("net", type=str, help="network interface")
|
||||||
|
parser.add_argument("config", type=str, help="config file name in the configs folder", default="g1.yaml")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
# Load config
|
||||||
|
config_path = f"{LEGGED_GYM_ROOT_DIR}/deploy/deploy_real/configs/{args.config}"
|
||||||
|
config = Config(config_path)
|
||||||
|
|
||||||
|
# Initialize DDS communication
|
||||||
|
ChannelFactoryInitialize(0, args.net)
|
||||||
|
|
||||||
|
controller = Controller(config)
|
||||||
|
|
||||||
|
# Enter the zero torque state, press the start key to continue executing
|
||||||
|
controller.zero_torque_state()
|
||||||
|
|
||||||
|
# Move to the default position
|
||||||
|
controller.move_to_default_pos()
|
||||||
|
|
||||||
|
# Enter the default position state, press the A key to continue executing
|
||||||
|
controller.default_pos_state()
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
controller.run()
|
||||||
|
# Press the select key to exit
|
||||||
|
if controller.remote_controller.button[KeyMap.select] == 1:
|
||||||
|
break
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
break
|
||||||
|
# Enter the damping state
|
||||||
|
create_damping_cmd(controller.low_cmd)
|
||||||
|
controller.send_cmd(controller.low_cmd)
|
||||||
|
controller.clear()
|
||||||
|
print("Exit")
|
|
@ -0,0 +1,12 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
import torch
|
||||||
|
import torch as th
|
||||||
|
import numpy as np
|
||||||
|
policy = torch.jit.load('../pre_train/g1/policy_eetrack.pt')
|
||||||
|
obs=np.load('/tmp/eet5/obs002.npy')
|
||||||
|
print('obs', obs.shape)
|
||||||
|
act=policy(torch.from_numpy(obs))
|
||||||
|
act_sim=np.load('/tmp/eet5/act002.npy')
|
||||||
|
act_rec=act.detach().cpu().numpy()
|
||||||
|
delta= (act_sim - act_rec)
|
||||||
|
print(np.abs(delta).max())
|
Loading…
Reference in New Issue