support policy learning with rospy

This commit is contained in:
junhyekh 2025-02-04 13:00:29 +00:00
parent 69105aa8d0
commit 84a01f065b
6 changed files with 924 additions and 1 deletions

View File

@ -0,0 +1,62 @@
from unitree_go.msg import LowCmd as LowCmdGo
from unitree_hg.msg import LowCmd as LowCmdHG
from typing import Union
class MotorMode:
PR = 0 # Series Control for Pitch/Roll Joints
AB = 1 # Parallel Control for A/B Joints
def create_damping_cmd(cmd: Union[LowCmdGo, LowCmdHG]):
size = len(cmd.motor_cmd)
for i in range(size):
cmd.motor_cmd[i].q = 0.0
cmd.motor_cmd[i].dq = 0.0
cmd.motor_cmd[i].kp = 0.0
cmd.motor_cmd[i].kd = 8.0
cmd.motor_cmd[i].tau = 0.0
def create_zero_cmd(cmd: Union[LowCmdGo, LowCmdHG]):
size = len(cmd.motor_cmd)
for i in range(size):
cmd.motor_cmd[i].q = 0.0
cmd.motor_cmd[i].dq = 0.0
cmd.motor_cmd[i].kp = 0.0
cmd.motor_cmd[i].kd = 0.0
cmd.motor_cmd[i].tau = 0.0
def init_cmd_hg(cmd: LowCmdHG, mode_machine: int, mode_pr: int):
cmd.mode_machine = mode_machine
cmd.mode_pr = mode_pr
size = len(cmd.motor_cmd)
print(size)
for i in range(size):
cmd.motor_cmd[i].mode = 1
cmd.motor_cmd[i].q = 0.0
cmd.motor_cmd[i].dq = 0.0
cmd.motor_cmd[i].kp = 0.0
cmd.motor_cmd[i].kd = 0.0
cmd.motor_cmd[i].tau = 0.0
def init_cmd_go(cmd: LowCmdGo, weak_motor: list):
cmd.head[0] = 0xFE
cmd.head[1] = 0xEF
cmd.level_flag = 0xFF
cmd.gpio = 0
PosStopF = 2.146e9
VelStopF = 16000.0
size = len(cmd.motor_cmd)
for i in range(size):
if i in weak_motor:
cmd.motor_cmd[i].mode = 1
else:
cmd.motor_cmd[i].mode = 0x0A
cmd.motor_cmd[i].q = PosStopF
cmd.motor_cmd[i].dq = VelStopF
cmd.motor_cmd[i].kp = 0.0
cmd.motor_cmd[i].kd = 0.0
cmd.motor_cmd[i].tau = 0.0

View File

@ -0,0 +1,232 @@
import struct
import ctypes
import os
import platform
from unitree_hg.msg import LowCmd as LowCmdHG, LowState as LowStateHG
from unitree_go.msg import LowCmd as LowCmdGo, LowState as LowStateGo
class Singleton:
__instance = None
def __new__(cls, *args, **kwargs):
if cls.__instance is None:
cls.__instance = super(Singleton, cls).__new__(cls)
return cls.__instance
def __init__(self):
pass
class CRC(Singleton):
def __init__(self):
#4 bytes aligned, little-endian format.
#size 812
self.__packFmtLowCmd = '<4B4IH2x' + 'B3x5f3I' * 20 + '4B' + '55Bx2I'
#size 1180
self.__packFmtLowState = '<4B4IH2x' + '13fb3x' + 'B3x7fb3x3I' * 20 + '4BiH4b15H' + '8hI41B3xf2b2x2f4h2I'
#size 1004
self.__packFmtHGLowCmd = '<2B2x' + 'B3x5fI' * 35 + '5I'
#size 2092
self.__packFmtHGLowState = '<2I2B2xI' + '13fh2x' + 'B3x4f2hf7I' * 35 + '40B5I'
script_dir = os.path.dirname(os.path.abspath(__file__))
self.platform = platform.system()
if self.platform == "Linux":
if platform.machine()=="x86_64":
self.crc_lib = ctypes.CDLL(script_dir + '/lib/crc_amd64.so')
elif platform.machine()=="aarch64":
self.crc_lib = ctypes.CDLL(script_dir + '/lib/crc_aarch64.so')
self.crc_lib.crc32_core.argtypes = (ctypes.POINTER(ctypes.c_uint32), ctypes.c_uint32)
self.crc_lib.crc32_core.restype = ctypes.c_uint32
def Crc(self, msg):
if type(msg) == LowCmdGo:
return self.__Crc32(self.__PackLowCmd(msg))
elif type(msg) == LowStateGo:
return self.__Crc32(self.__PackLowState(msg))
if type(msg) == LowCmdHG:
return self.__Crc32(self.__PackHGLowCmd(msg))
elif type(msg) == LowStateHG:
return self.__Crc32(self.__PackHGLowState(msg))
else:
raise TypeError('unknown message type to crc')
def __PackLowCmd(self, cmd: LowCmdGo):
origData = []
origData.extend(cmd.head)
origData.append(cmd.level_flag)
origData.append(cmd.frame_reserve)
origData.extend(cmd.sn)
origData.extend(cmd.version)
origData.append(cmd.bandwidth)
for i in range(20):
origData.append(cmd.motor_cmd[i].mode)
origData.append(cmd.motor_cmd[i].q)
origData.append(cmd.motor_cmd[i].dq)
origData.append(cmd.motor_cmd[i].tau)
origData.append(cmd.motor_cmd[i].kp)
origData.append(cmd.motor_cmd[i].kd)
origData.extend(cmd.motor_cmd[i].reserve)
origData.append(cmd.bms_cmd.off)
origData.extend(cmd.bms_cmd.reserve)
origData.extend(cmd.wireless_remote)
origData.extend(cmd.led)
origData.extend(cmd.fan)
origData.append(cmd.gpio)
origData.append(cmd.reserve)
origData.append(cmd.crc)
return self.__Trans(struct.pack(self.__packFmtLowCmd, *origData))
def __PackLowState(self, state: LowStateGo):
origData = []
origData.extend(state.head)
origData.append(state.level_flag)
origData.append(state.frame_reserve)
origData.extend(state.sn)
origData.extend(state.version)
origData.append(state.bandwidth)
origData.extend(state.imu_state.quaternion)
origData.extend(state.imu_state.gyroscope)
origData.extend(state.imu_state.accelerometer)
origData.extend(state.imu_state.rpy)
origData.append(state.imu_state.temperature)
for i in range(20):
origData.append(state.motor_state[i].mode)
origData.append(state.motor_state[i].q)
origData.append(state.motor_state[i].dq)
origData.append(state.motor_state[i].ddq)
origData.append(state.motor_state[i].tau_est)
origData.append(state.motor_state[i].q_raw)
origData.append(state.motor_state[i].dq_raw)
origData.append(state.motor_state[i].ddq_raw)
origData.append(state.motor_state[i].temperature)
origData.append(state.motor_state[i].lost)
origData.extend(state.motor_state[i].reserve)
origData.append(state.bms_state.version_high)
origData.append(state.bms_state.version_low)
origData.append(state.bms_state.status)
origData.append(state.bms_state.soc)
origData.append(state.bms_state.current)
origData.append(state.bms_state.cycle)
origData.extend(state.bms_state.bq_ntc)
origData.extend(state.bms_state.mcu_ntc)
origData.extend(state.bms_state.cell_vol)
origData.extend(state.foot_force)
origData.extend(state.foot_force_est)
origData.append(state.tick)
origData.extend(state.wireless_remote)
origData.append(state.bit_flag)
origData.append(state.adc_reel)
origData.append(state.temperature_ntc1)
origData.append(state.temperature_ntc2)
origData.append(state.power_v)
origData.append(state.power_a)
origData.extend(state.fan_frequency)
origData.append(state.reserve)
origData.append(state.crc)
return self.__Trans(struct.pack(self.__packFmtLowState, *origData))
def __PackHGLowCmd(self, cmd: LowCmdHG):
origData = []
origData.append(cmd.mode_pr)
origData.append(cmd.mode_machine)
for i in range(35):
origData.append(cmd.motor_cmd[i].mode)
origData.append(cmd.motor_cmd[i].q)
origData.append(cmd.motor_cmd[i].dq)
origData.append(cmd.motor_cmd[i].tau)
origData.append(cmd.motor_cmd[i].kp)
origData.append(cmd.motor_cmd[i].kd)
origData.append(cmd.motor_cmd[i].reserve)
origData.extend(cmd.reserve)
origData.append(cmd.crc)
return self.__Trans(struct.pack(self.__packFmtHGLowCmd, *origData))
def __PackHGLowState(self, state: LowStateHG):
origData = []
origData.extend(state.version)
origData.append(state.mode_pr)
origData.append(state.mode_machine)
origData.append(state.tick)
origData.extend(state.imu_state.quaternion)
origData.extend(state.imu_state.gyroscope)
origData.extend(state.imu_state.accelerometer)
origData.extend(state.imu_state.rpy)
origData.append(state.imu_state.temperature)
for i in range(35):
origData.append(state.motor_state[i].mode)
origData.append(state.motor_state[i].q)
origData.append(state.motor_state[i].dq)
origData.append(state.motor_state[i].ddq)
origData.append(state.motor_state[i].tau_est)
origData.extend(state.motor_state[i].temperature)
origData.append(state.motor_state[i].vol)
origData.extend(state.motor_state[i].sensor)
origData.append(state.motor_state[i].motorstate)
origData.extend(state.motor_state[i].reserve)
origData.extend(state.wireless_remote)
origData.extend(state.reserve)
origData.append(state.crc)
return self.__Trans(struct.pack(self.__packFmtHGLowState, *origData))
def __Trans(self, packData):
calcData = []
calcLen = ((len(packData)>>2)-1)
for i in range(calcLen):
d = ((packData[i*4+3] << 24) | (packData[i*4+2] << 16) | (packData[i*4+1] << 8) | (packData[i*4]))
calcData.append(d)
return calcData
def _crc_py(self, data):
bit = 0
crc = 0xFFFFFFFF
polynomial = 0x04c11db7
for i in range(len(data)):
bit = 1 << 31
current = data[i]
for b in range(32):
if crc & 0x80000000:
crc = (crc << 1) & 0xFFFFFFFF
crc ^= polynomial
else:
crc = (crc << 1) & 0xFFFFFFFF
if current & bit:
crc ^= polynomial
bit >>= 1
return crc
def _crc_ctypes(self, data):
uint32_array = (ctypes.c_uint32 * len(data))(*data)
length = len(data)
crc=self.crc_lib.crc32_core(uint32_array, length)
return crc
def __Crc32(self, data):
if self.platform == "Linux":
return self._crc_ctypes(data)
else:
return self._crc_py(data)

View File

@ -0,0 +1,42 @@
#
control_dt: 0.02
msg_type: "hg" # "hg" or "go"
imu_type: "pelvis" # "torso" or "pelvis"
lowcmd_topic: "rt/lowcmd"
lowstate_topic: "rt/lowstate"
policy_path: "{LEGGED_GYM_ROOT_DIR}/deploy/pre_train/g1/motion.pt"
leg_joint2motor_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
kps: [100, 100, 100, 150, 40, 40, 100, 100, 100, 150, 40, 40]
kds: [2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2]
default_angles: [-0.1, 0.0, 0.0, 0.3, -0.2, 0.0,
-0.1, 0.0, 0.0, 0.3, -0.2, 0.0]
arm_waist_joint2motor_idx: [12, 13, 14,
15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28]
arm_waist_kps: [300, 300, 300,
100, 100, 50, 50, 20, 20, 20,
100, 100, 50, 50, 20, 20, 20]
arm_waist_kds: [3, 3, 3,
2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 1, 1, 1]
arm_waist_target: [ 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]
ang_vel_scale: 0.25
dof_pos_scale: 1.0
dof_vel_scale: 0.05
action_scale: 0.25
cmd_scale: [2.0, 2.0, 0.25]
num_actions: 12
num_obs: 47
max_cmd: [0.8, 0.5, 1.57]

View File

@ -0,0 +1,265 @@
from legged_gym import LEGGED_GYM_ROOT_DIR
from typing import Union
import numpy as np
import time
import torch
from unitree_sdk2py.core.channel import ChannelPublisher, ChannelFactoryInitialize
from unitree_sdk2py.core.channel import ChannelSubscriber, ChannelFactoryInitialize
from unitree_sdk2py.idl.default import unitree_hg_msg_dds__LowCmd_, unitree_hg_msg_dds__LowState_
from unitree_sdk2py.idl.default import unitree_go_msg_dds__LowCmd_, unitree_go_msg_dds__LowState_
from unitree_sdk2py.idl.unitree_hg.msg.dds_ import LowCmd_ as LowCmdHG
from unitree_sdk2py.idl.unitree_go.msg.dds_ import LowCmd_ as LowCmdGo
from unitree_sdk2py.idl.unitree_hg.msg.dds_ import LowState_ as LowStateHG
from unitree_sdk2py.idl.unitree_go.msg.dds_ import LowState_ as LowStateGo
from unitree_sdk2py.utils.crc import CRC
from common.command_helper import create_damping_cmd, create_zero_cmd, init_cmd_hg, init_cmd_go, MotorMode
from common.rotation_helper import get_gravity_orientation, transform_imu_data
from common.remote_controller import RemoteController, KeyMap
from config import Config
class Controller:
def __init__(self, config: Config) -> None:
self.config = config
self.remote_controller = RemoteController()
# Initialize the policy network
self.policy = torch.jit.load(config.policy_path)
# Initializing process variables
self.qj = np.zeros(config.num_actions, dtype=np.float32)
self.dqj = np.zeros(config.num_actions, dtype=np.float32)
self.action = np.zeros(config.num_actions, dtype=np.float32)
self.target_dof_pos = config.default_angles.copy()
self.obs = np.zeros(config.num_obs, dtype=np.float32)
self.cmd = np.array([0.0, 0, 0])
self.counter = 0
if config.msg_type == "hg":
# g1 and h1_2 use the hg msg type
self.low_cmd = unitree_hg_msg_dds__LowCmd_()
self.low_state = unitree_hg_msg_dds__LowState_()
self.mode_pr_ = MotorMode.PR
self.mode_machine_ = 0
self.lowcmd_publisher_ = ChannelPublisher(config.lowcmd_topic, LowCmdHG)
self.lowcmd_publisher_.Init()
self.lowstate_subscriber = ChannelSubscriber(config.lowstate_topic, LowStateHG)
self.lowstate_subscriber.Init(self.LowStateHgHandler, 10)
elif config.msg_type == "go":
# h1 uses the go msg type
self.low_cmd = unitree_go_msg_dds__LowCmd_()
self.low_state = unitree_go_msg_dds__LowState_()
self.lowcmd_publisher_ = ChannelPublisher(config.lowcmd_topic, LowCmdGo)
self.lowcmd_publisher_.Init()
self.lowstate_subscriber = ChannelSubscriber(config.lowstate_topic, LowStateGo)
self.lowstate_subscriber.Init(self.LowStateGoHandler, 10)
else:
raise ValueError("Invalid msg_type")
# wait for the subscriber to receive data
self.wait_for_low_state()
# Initialize the command msg
if config.msg_type == "hg":
init_cmd_hg(self.low_cmd, self.mode_machine_, self.mode_pr_)
elif config.msg_type == "go":
init_cmd_go(self.low_cmd, weak_motor=self.config.weak_motor)
def LowStateHgHandler(self, msg: LowStateHG):
self.low_state = msg
self.mode_machine_ = self.low_state.mode_machine
self.remote_controller.set(self.low_state.wireless_remote)
def LowStateGoHandler(self, msg: LowStateGo):
self.low_state = msg
self.remote_controller.set(self.low_state.wireless_remote)
def send_cmd(self, cmd: Union[LowCmdGo, LowCmdHG]):
cmd.crc = CRC().Crc(cmd)
self.lowcmd_publisher_.Write(cmd)
def wait_for_low_state(self):
while self.low_state.tick == 0:
time.sleep(self.config.control_dt)
print("Successfully connected to the robot.")
def zero_torque_state(self):
print("Enter zero torque state.")
print("Waiting for the start signal...")
while self.remote_controller.button[KeyMap.start] != 1:
create_zero_cmd(self.low_cmd)
self.send_cmd(self.low_cmd)
time.sleep(self.config.control_dt)
def move_to_default_pos(self):
print("Moving to default pos.")
# move time 2s
total_time = 2
num_step = int(total_time / self.config.control_dt)
dof_idx = self.config.leg_joint2motor_idx + self.config.arm_waist_joint2motor_idx
kps = self.config.kps + self.config.arm_waist_kps
kds = self.config.kds + self.config.arm_waist_kds
default_pos = np.concatenate((self.config.default_angles, self.config.arm_waist_target), axis=0)
dof_size = len(dof_idx)
# record the current pos
init_dof_pos = np.zeros(dof_size, dtype=np.float32)
for i in range(dof_size):
init_dof_pos[i] = self.low_state.motor_state[dof_idx[i]].q
# move to default pos
for i in range(num_step):
alpha = i / num_step
for j in range(dof_size):
motor_idx = dof_idx[j]
target_pos = default_pos[j]
self.low_cmd.motor_cmd[motor_idx].q = init_dof_pos[j] * (1 - alpha) + target_pos * alpha
self.low_cmd.motor_cmd[motor_idx].qd = 0
self.low_cmd.motor_cmd[motor_idx].kp = kps[j]
self.low_cmd.motor_cmd[motor_idx].kd = kds[j]
self.low_cmd.motor_cmd[motor_idx].tau = 0
self.send_cmd(self.low_cmd)
time.sleep(self.config.control_dt)
def default_pos_state(self):
print("Enter default pos state.")
print("Waiting for the Button A signal...")
while self.remote_controller.button[KeyMap.A] != 1:
for i in range(len(self.config.leg_joint2motor_idx)):
motor_idx = self.config.leg_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = self.config.default_angles[i]
self.low_cmd.motor_cmd[motor_idx].qd = 0
self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0
for i in range(len(self.config.arm_waist_joint2motor_idx)):
motor_idx = self.config.arm_waist_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = self.config.arm_waist_target[i]
self.low_cmd.motor_cmd[motor_idx].qd = 0
self.low_cmd.motor_cmd[motor_idx].kp = self.config.arm_waist_kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self.config.arm_waist_kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0
self.send_cmd(self.low_cmd)
time.sleep(self.config.control_dt)
def run(self):
self.counter += 1
# Get the current joint position and velocity
for i in range(len(self.config.leg_joint2motor_idx)):
self.qj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].q
self.dqj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].dq
# imu_state quaternion: w, x, y, z
quat = self.low_state.imu_state.quaternion
ang_vel = np.array([self.low_state.imu_state.gyroscope], dtype=np.float32)
if self.config.imu_type == "torso":
# h1 and h1_2 imu is on the torso
# imu data needs to be transformed to the pelvis frame
waist_yaw = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].q
waist_yaw_omega = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].dq
quat, ang_vel = transform_imu_data(waist_yaw=waist_yaw, waist_yaw_omega=waist_yaw_omega, imu_quat=quat, imu_omega=ang_vel)
# create observation
gravity_orientation = get_gravity_orientation(quat)
qj_obs = self.qj.copy()
dqj_obs = self.dqj.copy()
qj_obs = (qj_obs - self.config.default_angles) * self.config.dof_pos_scale
dqj_obs = dqj_obs * self.config.dof_vel_scale
ang_vel = ang_vel * self.config.ang_vel_scale
period = 0.8
count = self.counter * self.config.control_dt
phase = count % period / period
sin_phase = np.sin(2 * np.pi * phase)
cos_phase = np.cos(2 * np.pi * phase)
self.cmd[0] = self.remote_controller.ly
self.cmd[1] = self.remote_controller.lx * -1
self.cmd[2] = self.remote_controller.rx * -1
num_actions = self.config.num_actions
self.obs[:3] = ang_vel
self.obs[3:6] = gravity_orientation
self.obs[6:9] = self.cmd * self.config.cmd_scale * self.config.max_cmd
self.obs[9 : 9 + num_actions] = qj_obs
self.obs[9 + num_actions : 9 + num_actions * 2] = dqj_obs
self.obs[9 + num_actions * 2 : 9 + num_actions * 3] = self.action
self.obs[9 + num_actions * 3] = sin_phase
self.obs[9 + num_actions * 3 + 1] = cos_phase
# Get the action from the policy network
obs_tensor = torch.from_numpy(self.obs).unsqueeze(0)
self.action = self.policy(obs_tensor).detach().numpy().squeeze()
# transform action to target_dof_pos
target_dof_pos = self.config.default_angles + self.action * self.config.action_scale
# Build low cmd
for i in range(len(self.config.leg_joint2motor_idx)):
motor_idx = self.config.leg_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = target_dof_pos[i]
self.low_cmd.motor_cmd[motor_idx].qd = 0
self.low_cmd.motor_cmd[motor_idx].kp = self.config.kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self.config.kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0
for i in range(len(self.config.arm_waist_joint2motor_idx)):
motor_idx = self.config.arm_waist_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = self.config.arm_waist_target[i]
self.low_cmd.motor_cmd[motor_idx].qd = 0
self.low_cmd.motor_cmd[motor_idx].kp = self.config.arm_waist_kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self.config.arm_waist_kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0
# send the command
self.send_cmd(self.low_cmd)
time.sleep(self.config.control_dt)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("net", type=str, help="network interface")
parser.add_argument("config", type=str, help="config file name in the configs folder", default="g1.yaml")
args = parser.parse_args()
# Load config
config_path = f"{LEGGED_GYM_ROOT_DIR}/deploy/deploy_real/configs/{args.config}"
config = Config(config_path)
# Initialize DDS communication
ChannelFactoryInitialize(0, args.net)
controller = Controller(config)
# Enter the zero torque state, press the start key to continue executing
controller.zero_torque_state()
# Move to the default position
controller.move_to_default_pos()
# Enter the default position state, press the A key to continue executing
controller.default_pos_state()
while True:
try:
controller.run()
# Press the select key to exit
if controller.remote_controller.button[KeyMap.select] == 1:
break
except KeyboardInterrupt:
break
# Enter the damping state
create_damping_cmd(controller.low_cmd)
controller.send_cmd(controller.low_cmd)
print("Exit")

View File

@ -0,0 +1,322 @@
from legged_gym import LEGGED_GYM_ROOT_DIR
from typing import Union
import numpy as np
import time
import torch
import rclpy as rp
from unitree_hg.msg import LowCmd as LowCmdHG, LowState as LowStateHG
from unitree_go.msg import LowCmd as LowCmdGo, LowState as LowStateGo
from common.command_helper_ros import create_damping_cmd, create_zero_cmd, init_cmd_hg, init_cmd_go, MotorMode
from common.rotation_helper import get_gravity_orientation, transform_imu_data
from common.remote_controller import RemoteController, KeyMap
from config import Config
from common.crc import CRC
from enum import Enum
class Mode(Enum):
wait = 0
zero_torque = 1
default_pos = 2
damping = 3
policy = 4
null = 5
class Controller:
def __init__(self, config: Config) -> None:
self.config = config
self.remote_controller = RemoteController()
# Initialize the policy network
self.policy = torch.jit.load(config.policy_path)
# Initializing process variables
self.qj = np.zeros(config.num_actions, dtype=np.float32)
self.dqj = np.zeros(config.num_actions, dtype=np.float32)
self.action = np.zeros(config.num_actions, dtype=np.float32)
self.target_dof_pos = config.default_angles.copy()
self.obs = np.zeros(config.num_obs, dtype=np.float32)
self.cmd = np.array([0.0, 0, 0])
self.counter = 0
rp.init()
self._node = rp.create_node("low_level_cmd_sender")
if config.msg_type == "hg":
# g1 and h1_2 use the hg msg type
self.low_cmd = LowCmdHG()
self.low_state = LowStateHG()
self.lowcmd_publisher_ = self._node.create_publisher(LowCmdHG,
'lowcmd', 10)
self.lowstate_subscriber = self._node.create_subscription(LowStateHG,
'lowstate', self.LowStateHgHandler, 10)
self.mode_pr_ = MotorMode.PR
self.mode_machine_ = 0
# self.lowcmd_publisher_ = ChannelPublisher(config.lowcmd_topic, LowCmdHG)
# self.lowcmd_publisher_.Init()
# self.lowstate_subscriber = ChannelSubscriber(config.lowstate_topic, LowStateHG)
# self.lowstate_subscriber.Init(self.LowStateHgHandler, 10)
elif config.msg_type == "go":
raise ValueError(f"{config.msg_type} is not implemented yet.")
else:
raise ValueError("Invalid msg_type")
# wait for the subscriber to receive data
# self.wait_for_low_state()
# Initialize the command msg
if config.msg_type == "hg":
init_cmd_hg(self.low_cmd, self.mode_machine_, self.mode_pr_)
elif config.msg_type == "go":
init_cmd_go(self.low_cmd, weak_motor=self.config.weak_motor)
self.mode = Mode.wait
self._mode_change = True
self._timer = self._node.create_timer(self.config.control_dt, self.run_wrapper)
self._terminate = False
try:
rp.spin(self._node)
except KeyboardInterrupt:
print("KeyboardInterrupt")
finally:
self._node.destroy_timer(self._timer)
create_damping_cmd(self.low_cmd)
self.send_cmd(self.low_cmd)
self._node.destroy_node()
rp.shutdown()
print("Exit")
def LowStateHgHandler(self, msg: LowStateHG):
self.low_state = msg
self.mode_machine_ = self.low_state.mode_machine
self.remote_controller.set(self.low_state.wireless_remote)
def LowStateGoHandler(self, msg: LowStateGo):
self.low_state = msg
self.remote_controller.set(self.low_state.wireless_remote)
def send_cmd(self, cmd: Union[LowCmdGo, LowCmdHG]):
cmd.mode_machine = self.mode_machine_
cmd.crc = CRC().Crc(cmd)
size = len(cmd.motor_cmd)
# print(cmd.mode_machine)
# for i in range(size):
# print(i, cmd.motor_cmd[i].q,
# cmd.motor_cmd[i].dq,
# cmd.motor_cmd[i].kp,
# cmd.motor_cmd[i].kd,
# cmd.motor_cmd[i].tau)
self.lowcmd_publisher_.publish(cmd)
def wait_for_low_state(self):
while self.low_state.crc == 0:
print(self.low_state)
time.sleep(self.config.control_dt)
print("Successfully connected to the robot.")
def zero_torque_state(self):
if self.remote_controller.button[KeyMap.start] == 1:
self._mode_change = True
self.mode = Mode.default_pos
else:
create_zero_cmd(self.low_cmd)
self.send_cmd(self.low_cmd)
def prepare_default_pos(self):
# move time 2s
total_time = 2
self.counter = 0
self._num_step = int(total_time / self.config.control_dt)
dof_idx = self.config.leg_joint2motor_idx + self.config.arm_waist_joint2motor_idx
kps = self.config.kps + self.config.arm_waist_kps
kds = self.config.kds + self.config.arm_waist_kds
self._kps = [float(kp) for kp in kps]
self._kds = [float(kd) for kd in kds]
self._default_pos = np.concatenate((self.config.default_angles, self.config.arm_waist_target), axis=0)
self._dof_size = len(dof_idx)
self._dof_idx = dof_idx
# record the current pos
self._init_dof_pos = np.zeros(self._dof_size,
dtype=np.float32)
for i in range(self._dof_size):
self._init_dof_pos[i] = self.low_state.motor_state[dof_idx[i]].q
def move_to_default_pos(self):
# move to default pos
if self.counter < self._num_step:
alpha = self.counter / self._num_step
for j in range(self._dof_size):
motor_idx = self._dof_idx[j]
target_pos = self._default_pos[j]
self.low_cmd.motor_cmd[motor_idx].q = (self._init_dof_pos[j] *
(1 - alpha) + target_pos * alpha)
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[j]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[j]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
self.send_cmd(self.low_cmd)
self.counter += 1
else:
self._mode_change = True
self.mode = Mode.damping
def default_pos_state(self):
if self.remote_controller.button[KeyMap.A] != 1:
for i in range(len(self.config.leg_joint2motor_idx)):
motor_idx = self.config.leg_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(self.config.default_angles[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
for i in range(len(self.config.arm_waist_joint2motor_idx)):
motor_idx = self.config.arm_waist_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(self.config.arm_waist_target[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
self.send_cmd(self.low_cmd)
else:
self._mode_change = True
self.mode = Mode.policy
def run_policy(self):
if self.remote_controller.button[KeyMap.select] == 1:
self._mode_change = True
self.mode = Mode.null
return
self.counter += 1
# Get the current joint position and velocity
for i in range(len(self.config.leg_joint2motor_idx)):
self.qj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].q
self.dqj[i] = self.low_state.motor_state[self.config.leg_joint2motor_idx[i]].dq
# imu_state quaternion: w, x, y, z
quat = self.low_state.imu_state.quaternion
ang_vel = np.array([self.low_state.imu_state.gyroscope], dtype=np.float32)
if self.config.imu_type == "torso":
# h1 and h1_2 imu is on the torso
# imu data needs to be transformed to the pelvis frame
waist_yaw = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].q
waist_yaw_omega = self.low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].dq
quat, ang_vel = transform_imu_data(waist_yaw=waist_yaw, waist_yaw_omega=waist_yaw_omega, imu_quat=quat, imu_omega=ang_vel)
# create observation
gravity_orientation = get_gravity_orientation(quat)
qj_obs = self.qj.copy()
dqj_obs = self.dqj.copy()
qj_obs = (qj_obs - self.config.default_angles) * self.config.dof_pos_scale
dqj_obs = dqj_obs * self.config.dof_vel_scale
ang_vel = ang_vel * self.config.ang_vel_scale
period = 0.8
count = self.counter * self.config.control_dt
phase = count % period / period
sin_phase = np.sin(2 * np.pi * phase)
cos_phase = np.cos(2 * np.pi * phase)
self.cmd[0] = self.remote_controller.ly
self.cmd[1] = self.remote_controller.lx * -1
self.cmd[2] = self.remote_controller.rx * -1
# print(self.remote_controller.ly,
# self.remote_controller.lx,
# self.remote_controller.rx)
# self.cmd[0] = 0.0
# self.cmd[1] = 0.0
# self.cmd[2] = 0.0
num_actions = self.config.num_actions
self.obs[:3] = ang_vel
self.obs[3:6] = gravity_orientation
self.obs[6:9] = self.cmd * self.config.cmd_scale * self.config.max_cmd
self.obs[9 : 9 + num_actions] = qj_obs
self.obs[9 + num_actions : 9 + num_actions * 2] = dqj_obs
self.obs[9 + num_actions * 2 : 9 + num_actions * 3] = self.action
self.obs[9 + num_actions * 3] = sin_phase
self.obs[9 + num_actions * 3 + 1] = cos_phase
# Get the action from the policy network
obs_tensor = torch.from_numpy(self.obs).unsqueeze(0)
self.action = self.policy(obs_tensor).detach().numpy().squeeze()
# transform action to target_dof_pos
target_dof_pos = self.config.default_angles + self.action * self.config.action_scale
# Build low cmd
for i in range(len(self.config.leg_joint2motor_idx)):
motor_idx = self.config.leg_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(target_dof_pos[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = float(self.config.kps[i])
self.low_cmd.motor_cmd[motor_idx].kd = float(self.config.kds[i])
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
for i in range(len(self.config.arm_waist_joint2motor_idx)):
motor_idx = self.config.arm_waist_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(self.config.arm_waist_target[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = float(self.config.arm_waist_kps[i])
self.low_cmd.motor_cmd[motor_idx].kd = float(self.config.arm_waist_kds[i])
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
# send the command
self.send_cmd(self.low_cmd)
def run_wrapper(self):
# print("hello", self.mode,
# self.mode == Mode.zero_torque)
if self.mode == Mode.wait:
if self.low_state.crc != 0:
self.mode = Mode.zero_torque
self.low_cmd.mode_machine = self.mode_machine_
print("Successfully connected to the robot.")
elif self.mode == Mode.zero_torque:
if self._mode_change:
print("Enter zero torque state.")
print("Waiting for the start signal...")
self._mode_change = False
self.zero_torque_state()
elif self.mode == Mode.default_pos:
if self._mode_change:
print("Moving to default pos.")
self._mode_change = False
self.prepare_default_pos()
self.move_to_default_pos()
elif self.mode == Mode.damping:
if self._mode_change:
print("Enter default pos state.")
print("Waiting for the Button A signal...")
self._mode_change = False
self.default_pos_state()
elif self.mode == Mode.policy:
if self._mode_change:
print("Run policy.")
self._mode_change = False
self.counter = 0
self.run_policy()
elif self.mode == Mode.null:
self._terminate = True
# time.sleep(self.config.control_dt)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str, help="config file name in the configs folder", default="g1.yaml")
args = parser.parse_args()
# Load config
config_path = f"{LEGGED_GYM_ROOT_DIR}/deploy/deploy_real/configs/{args.config}"
config = Config(config_path)
controller = Controller(config)

View File

@ -8,4 +8,4 @@ setup(name='unitree_rl_gym',
packages=find_packages(),
author_email='support@unitree.com',
description='Template RL environments for Unitree Robots',
install_requires=['isaacgym', 'rsl-rl', 'matplotlib', 'numpy==1.20', 'tensorboard', 'mujoco==3.2.3', 'pyyaml'])
install_requires=['rsl-rl', 'matplotlib','tensorboard', 'pyyaml'])