add the sim2sim code on mujoco

This commit is contained in:
craipy 2024-11-29 17:00:30 +08:00
parent bd00c6a2a1
commit fb7514ad38
9 changed files with 257 additions and 4 deletions

View File

@ -59,12 +59,57 @@ https://github.com/user-attachments/assets/98395d82-d3f6-4548-b6ee-8edfce70ac3e
2. H1 2. H1
https://github.com/user-attachments/assets/a9475a63-ea06-4327-bfa6-6a0f8065fa1c https://github.com/user-attachments/assets/7762b4f9-1072-4794-8ef6-7dd253a7ad4c
3. H1-2 3. H1-2
https://github.com/user-attachments/assets/d6cdee70-8f8a-4a50-b219-df31b269b083 https://github.com/user-attachments/assets/695323a7-a2d9-445b-bda8-f1b697159c39
4. G1 4. G1
https://github.com/user-attachments/assets/0b554137-76bc-43f9-97e1-dd704a33d6a9 https://github.com/user-attachments/assets/6063c03e-1143-4c75-8fda-793c8615cb08
### mujoco(sim2sim)
1. H1
Execute the following command in the project path:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml
```
Then you can get the following effect:
https://github.com/user-attachments/assets/10a84f8d-c02f-41cb-b2fd-76a97951b2c3
2. H1_2
Execute the following command in the project path:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py h1_2.yaml
```
Then you can get the following effect:
https://github.com/user-attachments/assets/fdd4f53d-3235-4978-a77f-1c71b32fb301
3. G1
Execute the following command in the project path:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml
```
Then you can get the following effect:
https://github.com/user-attachments/assets/99b892c3-7886-49f4-a7f1-0420b51443dd

View File

@ -0,0 +1,26 @@
#
policy_path: "{LEGGED_GYM_ROOT_DIR}/deploy/pre_train/g1/motion.pt"
xml_path: "{LEGGED_GYM_ROOT_DIR}/resources/robots/g1_description/scene.xml"
# Total simulation time
simulation_duration: 60.0
# Simulation time step
simulation_dt: 0.002
# Controller update frequency (meets the requirement of simulation_dt * controll_decimation=0.02; 50Hz)
control_decimation: 10
kps: [100, 100, 100, 150, 40, 40, 100, 100, 100, 150, 40, 40]
kds: [2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2]
default_angles: [-0.1, 0.0, 0.0, 0.3, -0.2, 0.0,
-0.1, 0.0, 0.0, 0.3, -0.2, 0.0]
ang_vel_scale: 0.25
dof_pos_scale: 1.0
dof_vel_scale: 0.05
action_scale: 0.25
cmd_scale: [2.0, 2.0, 0.25]
num_actions: 12
num_obs: 47
cmd_init: [0.5, 0, 0]

View File

@ -0,0 +1,26 @@
#
policy_path: "{LEGGED_GYM_ROOT_DIR}/deploy/pre_train/h1/motion.pt"
xml_path: "{LEGGED_GYM_ROOT_DIR}/resources/robots/h1/scene.xml"
# Total simulation time
simulation_duration: 60.0
# Simulation time step
simulation_dt: 0.002
# Controller update frequency (meets the requirement of simulation_dt * controll_decimation=0.02; 50Hz)
control_decimation: 10
kps: [150, 150, 150, 200, 40, 150, 150, 150, 200, 40]
kds: [2, 2, 2, 4, 2, 2, 2, 2, 4, 2]
default_angles: [0, 0.0, -0.1, 0.3, -0.2,
0, 0.0, -0.1, 0.3, -0.2]
ang_vel_scale: 0.25
dof_pos_scale: 1.0
dof_vel_scale: 0.05
action_scale: 0.25
cmd_scale: [2.0, 2.0, 0.25]
num_actions: 10
num_obs: 41
cmd_init: [0.5, 0, 0]

View File

@ -0,0 +1,26 @@
#
policy_path: "{LEGGED_GYM_ROOT_DIR}/deploy/pre_train/h1_2/motion.pt"
xml_path: "{LEGGED_GYM_ROOT_DIR}/resources/robots/h1_2/scene.xml"
# Total simulation time
simulation_duration: 60.0
# Simulation time step
simulation_dt: 0.002
# Controller update frequency (meets the requirement of simulation_dt * controll_decimation=0.02; 50Hz)
control_decimation: 10
kps: [200, 200, 200, 300, 40, 40, 200, 200, 200, 300, 40, 40]
kds: [2.5, 2.5, 2.5, 4, 2, 2, 2.5, 2.5, 2.5, 4, 2, 2]
default_angles: [0, -0.16, 0.0, 0.36, -0.2, 0.0,
0, -0.16, 0.0, 0.36, -0.2, 0.0]
ang_vel_scale: 0.25
dof_pos_scale: 1.0
dof_vel_scale: 0.05
action_scale: 0.25
cmd_scale: [2.0, 2.0, 0.25]
num_actions: 12
num_obs: 47
cmd_init: [0.5, 0, 0]

View File

@ -0,0 +1,130 @@
import time
import mujoco.viewer
import mujoco
import numpy as np
from legged_gym import LEGGED_GYM_ROOT_DIR
import torch
import yaml
def get_gravity_orientation(quaternion):
qw = quaternion[0]
qx = quaternion[1]
qy = quaternion[2]
qz = quaternion[3]
gravity_orientation = np.zeros(3)
gravity_orientation[0] = 2 * (-qz * qx + qw * qy)
gravity_orientation[1] = -2 * (qz * qy + qw * qx)
gravity_orientation[2] = 1 - 2 * (qw * qw + qz * qz)
return gravity_orientation
def pd_control(target_q, q, kp, target_dq, dq, kd):
"""Calculates torques from position commands"""
return (target_q - q) * kp + (target_dq - dq) * kd
if __name__ == "__main__":
# get config file name from command line
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("config_file", type=str, help="config file name in the config folder")
args = parser.parse_args()
config_file = args.config_file
with open(f"{LEGGED_GYM_ROOT_DIR}/deploy/deploy_mujoco/configs/{config_file}", "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
policy_path = config["policy_path"].replace("{LEGGED_GYM_ROOT_DIR}", LEGGED_GYM_ROOT_DIR)
xml_path = config["xml_path"].replace("{LEGGED_GYM_ROOT_DIR}", LEGGED_GYM_ROOT_DIR)
simulation_duration = config["simulation_duration"]
simulation_dt = config["simulation_dt"]
control_decimation = config["control_decimation"]
kps = np.array(config["kps"], dtype=np.float32)
kds = np.array(config["kds"], dtype=np.float32)
default_angles = np.array(config["default_angles"], dtype=np.float32)
ang_vel_scale = config["ang_vel_scale"]
dof_pos_scale = config["dof_pos_scale"]
dof_vel_scale = config["dof_vel_scale"]
action_scale = config["action_scale"]
cmd_scale = np.array(config["cmd_scale"], dtype=np.float32)
num_actions = config["num_actions"]
num_obs = config["num_obs"]
cmd = np.array(config["cmd_init"], dtype=np.float32)
# define context variables
action = np.zeros(num_actions, dtype=np.float32)
target_dof_pos = default_angles.copy()
obs = np.zeros(num_obs, dtype=np.float32)
counter = 0
# Load robot model
m = mujoco.MjModel.from_xml_path(xml_path)
d = mujoco.MjData(m)
m.opt.timestep = simulation_dt
# load policy
policy = torch.jit.load(policy_path)
with mujoco.viewer.launch_passive(m, d) as viewer:
# Close the viewer automatically after simulation_duration wall-seconds.
start = time.time()
while viewer.is_running() and time.time() - start < simulation_duration:
step_start = time.time()
tau = pd_control(target_dof_pos, d.qpos[7:], kps, np.zeros_like(kds), d.qvel[6:], kds)
d.ctrl[:] = tau
# mj_step can be replaced with code that also evaluates
# a policy and applies a control signal before stepping the physics.
mujoco.mj_step(m, d)
counter += 1
if counter % control_decimation == 0:
# Apply control signal here.
# create observation
qj = d.qpos[7:]
dqj = d.qvel[6:]
quat = d.qpos[3:7]
omega = d.qvel[3:6]
qj = (qj - default_angles) * dof_pos_scale
dqj = dqj * dof_vel_scale
gravity_orientation = get_gravity_orientation(quat)
omega = omega * ang_vel_scale
period = 0.8
count = counter * simulation_dt
phase = count % period / period
sin_phase = np.sin(2 * np.pi * phase)
cos_phase = np.cos(2 * np.pi * phase)
obs[:3] = omega
obs[3:6] = gravity_orientation
obs[6:9] = cmd * cmd_scale
obs[9 : 9 + num_actions] = qj
obs[9 + num_actions : 9 + 2 * num_actions] = dqj
obs[9 + 2 * num_actions : 9 + 3 * num_actions] = action
obs[9 + 3 * num_actions : 9 + 3 * num_actions + 2] = np.array([sin_phase, cos_phase])
obs_tensor = torch.from_numpy(obs).unsqueeze(0)
# policy inference
action = policy(obs_tensor).detach().numpy().squeeze()
# transform action to target_dof_pos
target_dof_pos = action * action_scale + default_angles
# Pick up changes to the physics state, apply perturbations, update options from GUI.
viewer.sync()
# Rudimentary time keeping, will drift relative to wall clock.
time_until_next_step = m.opt.timestep - (time.time() - step_start)
if time_until_next_step > 0:
time.sleep(time_until_next_step)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -8,4 +8,4 @@ setup(name='unitree_rl_gym',
packages=find_packages(), packages=find_packages(),
author_email='support@unitree.com', author_email='support@unitree.com',
description='Template RL environments for Unitree Robots', description='Template RL environments for Unitree Robots',
install_requires=['isaacgym', 'rsl-rl', 'matplotlib', 'numpy==1.20', 'tensorboard']) install_requires=['isaacgym', 'rsl-rl', 'matplotlib', 'numpy==1.20', 'tensorboard', 'mujoco==3.2.3', 'pyyaml'])