from legged_gym.envs.base.legged_robot_config import LeggedRobotCfg, LeggedRobotCfgPPO class H1RoughCfg( LeggedRobotCfg ): class init_state( LeggedRobotCfg.init_state ): pos = [0.0, 0.0, 1.0] # x,y,z [m] default_joint_angles = { # = target angles [rad] when action = 0.0 'left_hip_yaw_joint' : 0. , 'left_hip_roll_joint' : 0, 'left_hip_pitch_joint' : -0.1, 'left_knee_joint' : 0.3, 'left_ankle_joint' : -0.2, 'right_hip_yaw_joint' : 0., 'right_hip_roll_joint' : 0, 'right_hip_pitch_joint' : -0.1, 'right_knee_joint' : 0.3, 'right_ankle_joint' : -0.2, 'torso_joint' : 0., 'left_shoulder_pitch_joint' : 0., 'left_shoulder_roll_joint' : 0, 'left_shoulder_yaw_joint' : 0., 'left_elbow_joint' : 0., 'right_shoulder_pitch_joint' : 0., 'right_shoulder_roll_joint' : 0.0, 'right_shoulder_yaw_joint' : 0., 'right_elbow_joint' : 0., } class env(LeggedRobotCfg.env): # 3 + 3 + 3 + 10 + 10 + 10 + 2 = 41 num_observations = 41 num_privileged_obs = 44 num_actions = 10 class domain_rand(LeggedRobotCfg.domain_rand): randomize_friction = True friction_range = [0.1, 1.25] randomize_base_mass = True added_mass_range = [-1., 3.] push_robots = True push_interval_s = 5 max_push_vel_xy = 1.5 class control( LeggedRobotCfg.control ): # PD Drive parameters: control_type = 'P' # PD Drive parameters: stiffness = {'hip_yaw': 150, 'hip_roll': 150, 'hip_pitch': 150, 'knee': 200, 'ankle': 40, 'torso': 300, 'shoulder': 150, "elbow":100, } # [N*m/rad] damping = { 'hip_yaw': 2, 'hip_roll': 2, 'hip_pitch': 2, 'knee': 4, 'ankle': 2, 'torso': 6, 'shoulder': 2, "elbow":2, } # [N*m/rad] # [N*m*s/rad] # action scale: target angle = actionScale * action + defaultAngle action_scale = 0.25 # decimation: Number of control action updates @ sim DT per policy DT decimation = 4 class asset( LeggedRobotCfg.asset ): file = '{LEGGED_GYM_ROOT_DIR}/resources/robots/h1/urdf/h1.urdf' name = "h1" foot_name = "ankle" penalize_contacts_on = ["hip", "knee"] terminate_after_contacts_on = ["pelvis"] self_collisions = 0 # 1 to disable, 0 to enable...bitwise filter flip_visual_attachments = False class rewards( LeggedRobotCfg.rewards ): soft_dof_pos_limit = 0.9 base_height_target = 1.05 class scales( LeggedRobotCfg.rewards.scales ): tracking_lin_vel = 1.0 tracking_ang_vel = 0.5 lin_vel_z = -2.0 ang_vel_xy = -0.05 orientation = -1.0 base_height = -10.0 dof_acc = -2.5e-7 feet_air_time = 0.0 collision = -1.0 action_rate = -0.01 torques = 0.0 dof_pos_limits = -5.0 alive = 0.15 hip_pos = -1.0 contact_no_vel = -0.2 feet_swing_height = -20.0 contact = 0.18 class H1RoughCfgPPO( LeggedRobotCfgPPO ): class policy: init_noise_std = 0.8 actor_hidden_dims = [32] critic_hidden_dims = [32] activation = 'elu' # can be elu, relu, selu, crelu, lrelu, tanh, sigmoid # only for 'ActorCriticRecurrent': rnn_type = 'lstm' rnn_hidden_size = 64 rnn_num_layers = 1 class algorithm( LeggedRobotCfgPPO.algorithm ): entropy_coef = 0.01 class runner( LeggedRobotCfgPPO.runner ): policy_class_name = "ActorCriticRecurrent" max_iterations = 10000 run_name = '' experiment_name = 'h1'