import sys from legged_gym import LEGGED_GYM_ROOT_DIR import os import sys from legged_gym import LEGGED_GYM_ROOT_DIR import isaacgym from legged_gym.envs import * from legged_gym.utils import get_args, export_policy_as_jit, task_registry, Logger import numpy as np import torch def play(args): env_cfg, train_cfg = task_registry.get_cfgs(name=args.task) # override some parameters for testing env_cfg.env.num_envs = min(env_cfg.env.num_envs, 100) env_cfg.terrain.num_rows = 5 env_cfg.terrain.num_cols = 5 env_cfg.terrain.curriculum = False env_cfg.noise.add_noise = False env_cfg.domain_rand.randomize_friction = False env_cfg.domain_rand.push_robots = False env_cfg.env.test = True # prepare environment env, _ = task_registry.make_env(name=args.task, args=args, env_cfg=env_cfg) obs = env.get_observations() # load policy train_cfg.runner.resume = True ppo_runner, train_cfg = task_registry.make_alg_runner(env=env, name=args.task, args=args, train_cfg=train_cfg) policy = ppo_runner.get_inference_policy(device=env.device) # export policy as a jit module (used to run it from C++) if EXPORT_POLICY: path = os.path.join(LEGGED_GYM_ROOT_DIR, 'logs', train_cfg.runner.experiment_name, 'exported', 'policies') export_policy_as_jit(ppo_runner.alg.actor_critic, path) print('Exported policy as jit script to: ', path) for i in range(10*int(env.max_episode_length)): actions = policy(obs.detach()) obs, _, rews, dones, infos = env.step(actions.detach()) if __name__ == '__main__': EXPORT_POLICY = True RECORD_FRAMES = False MOVE_CAMERA = False args = get_args() play(args)