import os from datetime import datetime from typing import Tuple import torch import numpy as np import sys sys.path.append("/home/unitree/unitree_rl_gym/rsl_rl") from rsl_rl.env import VecEnv from rsl_rl.runners import OnPolicyRunner from legged_gym import LEGGED_GYM_ROOT_DIR, LEGGED_GYM_ENVS_DIR from .helpers import get_args, update_cfg_from_args, class_to_dict, get_load_path, set_seed, parse_sim_params from legged_gym.envs.base.legged_robot_config import LeggedRobotCfg, LeggedRobotCfgPPO class TaskRegistry(): def __init__(self): self.task_classes = {} self.env_cfgs = {} self.train_cfgs = {} def register(self, name: str, task_class: VecEnv, env_cfg: LeggedRobotCfg, train_cfg: LeggedRobotCfgPPO): self.task_classes[name] = task_class self.env_cfgs[name] = env_cfg self.train_cfgs[name] = train_cfg def get_task_class(self, name: str) -> VecEnv: return self.task_classes[name] def get_cfgs(self, name) -> Tuple[LeggedRobotCfg, LeggedRobotCfgPPO]: train_cfg = self.train_cfgs[name] env_cfg = self.env_cfgs[name] # copy seed env_cfg.seed = train_cfg.seed return env_cfg, train_cfg def make_env(self, name, args=None, env_cfg=None) -> Tuple[VecEnv, LeggedRobotCfg]: """ Creates an environment either from a registered namme or from the provided config file. Args: name (string): Name of a registered env. args (Args, optional): Isaac Gym comand line arguments. If None get_args() will be called. Defaults to None. env_cfg (Dict, optional): Environment config file used to override the registered config. Defaults to None. Raises: ValueError: Error if no registered env corresponds to 'name' Returns: isaacgym.VecTaskPython: The created environment Dict: the corresponding config file """ # if no args passed get command line arguments if args is None: args = get_args() # check if there is a registered env with that name if name in self.task_classes: task_class = self.get_task_class(name) else: raise ValueError(f"Task with name: {name} was not registered") if env_cfg is None: # load config files env_cfg, _ = self.get_cfgs(name) # override cfg from args (if specified) env_cfg, _ = update_cfg_from_args(env_cfg, None, args) set_seed(env_cfg.seed) # parse sim params (convert to dict first) sim_params = {"sim": class_to_dict(env_cfg.sim)} sim_params = parse_sim_params(args, sim_params) env = task_class( cfg=env_cfg, sim_params=sim_params, physics_engine=args.physics_engine, sim_device=args.sim_device, headless=args.headless) return env, env_cfg def make_alg_runner(self, env, name=None, args=None, train_cfg=None, log_root="default") -> Tuple[OnPolicyRunner, LeggedRobotCfgPPO]: """ Creates the training algorithm either from a registered namme or from the provided config file. Args: env (isaacgym.VecTaskPython): The environment to train (TODO: remove from within the algorithm) name (string, optional): Name of a registered env. If None, the config file will be used instead. Defaults to None. args (Args, optional): Isaac Gym comand line arguments. If None get_args() will be called. Defaults to None. train_cfg (Dict, optional): Training config file. If None 'name' will be used to get the config file. Defaults to None. log_root (str, optional): Logging directory for Tensorboard. Set to 'None' to avoid logging (at test time for example). Logs will be saved in /_. Defaults to "default"=/logs/. Raises: ValueError: Error if neither 'name' or 'train_cfg' are provided Warning: If both 'name' or 'train_cfg' are provided 'name' is ignored Returns: PPO: The created algorithm Dict: the corresponding config file """ # if no args passed get command line arguments if args is None: args = get_args() # if config files are passed use them, otherwise load from the name if train_cfg is None: if name is None: raise ValueError("Either 'name' or 'train_cfg' must be not None") # load config files _, train_cfg = self.get_cfgs(name) else: if name is not None: print(f"'train_cfg' provided -> Ignoring 'name={name}'") # override cfg from args (if specified) _, train_cfg = update_cfg_from_args(None, train_cfg, args) if log_root=="default": log_root = os.path.join(LEGGED_GYM_ROOT_DIR, 'logs', train_cfg.runner.experiment_name) log_dir = os.path.join(log_root, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + train_cfg.runner.run_name) elif log_root is None: log_dir = None else: log_dir = os.path.join(log_root, datetime.now().strftime('%b%d_%H-%M-%S') + '_' + train_cfg.runner.run_name) train_cfg_dict = class_to_dict(train_cfg) runner = OnPolicyRunner(env, train_cfg_dict, log_dir, device=args.rl_device) #save resume path before creating a new log_dir resume = train_cfg.runner.resume if resume: # load previously trained model resume_path = get_load_path(log_root, load_run=train_cfg.runner.load_run, checkpoint=train_cfg.runner.checkpoint) print(f"Loading model from: {resume_path}") runner.load(resume_path) return runner, train_cfg # make global task registry task_registry = TaskRegistry()