import sys from legged_gym import LEGGED_GYM_ROOT_DIR import os import sys from legged_gym import LEGGED_GYM_ROOT_DIR import isaacgym from legged_gym.envs import * from legged_gym.utils import get_args, export_policy_as_jit, task_registry, Logger import numpy as np import torch def play(args): env_cfg, train_cfg = task_registry.get_cfgs(name=args.task) # override some parameters for testing env_cfg.env.num_envs = min(env_cfg.env.num_envs, 100) env_cfg.terrain.num_rows = 5 env_cfg.terrain.num_cols = 5 env_cfg.terrain.curriculum = False env_cfg.noise.add_noise = False env_cfg.domain_rand.randomize_friction = False env_cfg.domain_rand.push_robots = False env_cfg.env.test = True # prepare environment env, _ = task_registry.make_env(name=args.task, args=args, env_cfg=env_cfg) obs = env.get_observations() # load policy train_cfg.runner.resume = True ppo_runner, train_cfg = task_registry.make_alg_runner(env=env, name=args.task, args=args, train_cfg=train_cfg) policy = ppo_runner.get_inference_policy(device=env.device) # Define the joint orders for sim A and sim B sim_a_joints = [ 'left_hip_pitch_joint', 'right_hip_pitch_joint', 'waist_yaw_joint', 'left_hip_roll_joint', 'right_hip_roll_joint', 'waist_roll_joint', 'left_hip_yaw_joint', 'right_hip_yaw_joint', 'waist_pitch_joint', 'left_knee_joint', 'right_knee_joint', 'left_shoulder_pitch_joint', 'right_shoulder_pitch_joint', 'left_ankle_pitch_joint', 'right_ankle_pitch_joint', 'left_shoulder_roll_joint', 'right_shoulder_roll_joint', 'left_ankle_roll_joint', 'right_ankle_roll_joint', 'left_shoulder_yaw_joint', 'right_shoulder_yaw_joint', 'left_elbow_joint', 'right_elbow_joint', 'left_wrist_roll_joint', 'right_wrist_roll_joint', 'left_wrist_pitch_joint', 'right_wrist_pitch_joint', 'left_wrist_yaw_joint', 'right_wrist_yaw_joint' ] sim_b_joints = [ 'left_hip_pitch_joint', 'left_hip_roll_joint', 'left_hip_yaw_joint', 'left_knee_joint', 'left_ankle_pitch_joint', 'left_ankle_roll_joint', 'right_hip_pitch_joint', 'right_hip_roll_joint', 'right_hip_yaw_joint', 'right_knee_joint', 'right_ankle_pitch_joint', 'right_ankle_roll_joint', 'waist_yaw_joint', 'waist_roll_joint', 'waist_pitch_joint', 'left_shoulder_pitch_joint', 'left_shoulder_roll_joint', 'left_shoulder_yaw_joint', 'left_elbow_joint', 'left_wrist_roll_joint', 'left_wrist_pitch_joint', 'left_wrist_yaw_joint', 'right_shoulder_pitch_joint', 'right_shoulder_roll_joint', 'right_shoulder_yaw_joint', 'right_elbow_joint', 'right_wrist_roll_joint', 'right_wrist_pitch_joint', 'right_wrist_yaw_joint' ] # Create a mapping tensor mapping_tensor = torch.zeros((len(sim_b_joints), len(sim_a_joints)), device=env.device) # Fill the mapping tensor for b_idx, b_joint in enumerate(sim_b_joints): if b_joint in sim_a_joints: a_idx = sim_a_joints.index(b_joint) # mapping_tensor[b_idx, a_idx] = 1.0 mapping_tensor[a_idx, b_idx] = 1.0 # export policy as a jit module (used to run it from C++) if EXPORT_POLICY: path = os.path.join(LEGGED_GYM_ROOT_DIR, 'logs', train_cfg.runner.experiment_name, 'exported', 'policies') export_policy_as_jit(ppo_runner.alg.actor_critic, path) print('Exported policy as jit script to: ', path) for i in range(10*int(env.max_episode_length)): obs[..., 9:38] = obs[..., 9:38] @ mapping_tensor.transpose(0, 1) obs[..., 38:67] = obs[..., 38:67] @ mapping_tensor.transpose(0, 1) obs[..., 67:96] = obs[..., 67:96] @ mapping_tensor.transpose(0, 1) # from icecream import ic # ic( # obs[..., :9], # obs[..., 9:38], # obs[..., 38:67], # obs[..., 67:96], # ) actions = policy(obs.detach()) # ic( # actions # ) reordered_actions = actions @ mapping_tensor # obs, _, rews, dones, infos = env.step(actions.detach()) obs, _, rews, dones, infos = env.step(reordered_actions.detach()) if __name__ == '__main__': EXPORT_POLICY = True # EXPORT_POLICY = False RECORD_FRAMES = False MOVE_CAMERA = False args = get_args() play(args)