import numpy as np import torch import pinocchio as pin from common.np_math import (quat_from_angle_axis, quat_mul, xyzw2wxyz, index_map) from config import Config from ikctrl import IKCtrl class ActToDof: def __init__(self, config, ikctrl): self.config=config self.ikctrl = ikctrl self.lim_lo_pin = self.ikctrl.robot.model.lowerPositionLimit self.lim_hi_pin = self.ikctrl.robot.model.upperPositionLimit self.mot_from_pin = index_map( self.config.motor_joint, self.ikctrl.joint_names) self.pin_from_mot = index_map( self.ikctrl.joint_names, self.config.motor_joint ) self.pin_from_lab = index_map( self.ikctrl.joint_names, self.config.lab_joint ) self.pin_from_arm = index_map( self.ikctrl.joint_names, self.config.arm_joint ) self.mot_from_arm = index_map( self.config.motor_joint, self.config.arm_joint ) self.mot_from_lab = index_map( self.config.motor_joint, self.config.lab_joint ) self.lab_from_mot = index_map( self.config.lab_joint, self.config.motor_joint ) self.mot_from_nonarm = index_map( self.config.motor_joint, self.config.non_arm_joint ) self.lab_from_nonarm = index_map( self.config.lab_joint, self.config.non_arm_joint ) self.default_nonarm = ( np.asarray(self.config.lab_joint_offsets)[self.lab_from_nonarm] ) def __call__(self, obs, action): hands_command = obs[..., 119:125] non_arm_joint_pos = action[..., :22] left_arm_residual = action[..., 22:29] q_lab = obs[..., 32:61] q_pin = np.zeros_like(self.ikctrl.cfg.q) q_pin[self.pin_from_lab] = q_lab q_pin[self.pin_from_lab] += np.asarray(self.config.lab_joint_offsets) q_mot = np.zeros(29) q_mot[self.mot_from_lab] = q_lab q_mot[self.mot_from_lab] += np.asarray(self.config.lab_joint_offsets) #print('q_mot (inside)', q_mot) # print('q0', q_mot[self.mot_from_arm]) # q_mot[i_mot] = q_lab[ lab_from_mot[i_mot] ] d_quat = quat_from_angle_axis( torch.from_numpy(hands_command[..., 3:]) ).detach().cpu().numpy() # print('d_quat', d_quat) source_pose = self.ikctrl.fk(q_pin) source_xyz = source_pose.translation source_quat = xyzw2wxyz(pin.Quaternion(source_pose.rotation).coeffs()) target_xyz = source_xyz + hands_command[..., :3] target_quat = quat_mul( torch.from_numpy(d_quat), torch.from_numpy(source_quat)).detach().cpu().numpy() target = np.concatenate([target_xyz, target_quat]) # print('target', target) # print('q_pin', q_pin) res_q_ik = self.ikctrl( q_pin, target ) # print('res_q_ik', res_q_ik) # q_pin2 = np.copy(q_pin) # q_pin2[self.pin_from_arm] += res_q_ik # print('target', target) # se3=self.ikctrl.fk(q_pin2) # print('fk(IK(target))', se3.translation, # xyzw2wxyz(pin.Quaternion(se3.rotation).coeffs())) # print('res_q_ik', res_q_ik) # print('left_arm_residual', # 0.3 * left_arm_residual, # np.clip(0.3 * left_arm_residual, -0.2, 0.2)) target_dof_pos = np.zeros(29) target_dof_pos += q_mot target_dof_pos[self.mot_from_arm] += res_q_ik if True: target_dof_pos[self.mot_from_arm] += np.clip( 0.3 * left_arm_residual, -0.2, 0.2) # print('default joint pos', self.default_nonarm) # print('joint order', self.config.non_arm_joint) # print('mot_from_nonarm', self.mot_from_nonarm) target_dof_pos[self.mot_from_nonarm] = ( self.default_nonarm + 0.5 * non_arm_joint_pos ) target_dof_pos[self.mot_from_arm] = np.clip( target_dof_pos[self.mot_from_arm], self.lim_lo_pin[self.pin_from_arm], self.lim_hi_pin[self.pin_from_arm] ) return target_dof_pos def main(): from matplotlib import pyplot as plt import yaml with open('configs/g1_eetrack.yaml', 'r') as fp: d = yaml.safe_load(fp) config = Config('configs/g1_eetrack.yaml') ikctrl = IKCtrl( '../../resources/robots/g1_description/g1_29dof_with_hand_rev_1_0.urdf', config.arm_joint ) act_to_dof = ActToDof(config, ikctrl) exps = [] cals = [] poss = [] for i in range(70): obs = np.load(F'/tmp/eet5/obs{i:03d}.npy')[0] # print(obs.shape) act = np.load(F'/tmp/eet5/act{i:03d}.npy')[0] # print('act', act.shape) dof_lab = np.load(F'/tmp/eet5/dof{i:03d}.npy')[0] mot_from_lab = index_map(d['motor_joint'], d['lab_joint']) target_dof_pos = np.zeros_like(dof_lab) target_dof_pos[mot_from_lab] = dof_lab dof = act_to_dof(obs, act) export = target_dof_pos calc = dof mot_from_arm = index_map(d['motor_joint'], d['arm_joint']) # print('exported', target_dof_pos[mot_from_arm], # 'calculated', dof[mot_from_arm]) # print( (export - calc)[mot_from_arm] ) exps.append( target_dof_pos[mot_from_arm] ) cals.append( dof[mot_from_arm] ) q_lab = obs[..., 32:61] q_mot = q_lab[act_to_dof.lab_from_mot] q_arm = q_mot[mot_from_arm] poss.append(q_arm) exps=np.asarray(exps, dtype=np.float32) cals=np.asarray(cals, dtype=np.float32) poss=np.asarray(poss, dtype=np.float32) print(exps.shape) print(cals.shape) fig, ax=plt.subplots(7,1) q_lo =act_to_dof.lim_lo_pin[act_to_dof.pin_from_arm] q_hi =act_to_dof.lim_hi_pin[act_to_dof.pin_from_arm] RES = True for i in range(7): if RES: ax[i].axhline(0) else: ax[i].axhline(q_lo[i], color='k', linestyle='--') ax[i].axhline(q_hi[i], color='k', linestyle='--') if RES: ax[i].plot(exps[:, i]-poss[:,i], label='sim') ax[i].plot(cals[:, i]-poss[:,i], label='real') else: ax[i].plot(poss[:, i], label='pos') ax[i].plot(exps[:, i], label='sim') ax[i].plot(cals[:, i], label='real') ax[i].legend() plt.show() if __name__ == '__main__': main()