unitree_rl_gym/legged_gym/envs/g1/g1_config.py

84 lines
3.0 KiB
Python

from legged_gym.envs.base.legged_robot_config import LeggedRobotCfg, LeggedRobotCfgPPO
class G1RoughCfg( LeggedRobotCfg ):
class init_state( LeggedRobotCfg.init_state ):
pos = [0.0, 0.0, 0.8] # x,y,z [m]
default_joint_angles = { # = target angles [rad] when action = 0.0
'left_hip_yaw_joint' : 0. ,
'left_hip_roll_joint' : 0,
'left_hip_pitch_joint' : -0.1,
'left_knee_joint' : 0.3,
'left_ankle_pitch_joint' : -0.2,
'left_ankle_roll_joint' : 0,
'right_hip_yaw_joint' : 0.,
'right_hip_roll_joint' : 0,
'right_hip_pitch_joint' : -0.1,
'right_knee_joint' : 0.3,
'right_ankle_pitch_joint': -0.2,
'right_ankle_roll_joint' : 0,
'torso_joint' : 0.
}
class env(LeggedRobotCfg.env):
num_observations = 48
num_actions = 12
class control( LeggedRobotCfg.control ):
# PD Drive parameters:
control_type = 'P'
# PD Drive parameters:
stiffness = {'hip_yaw': 150,
'hip_roll': 150,
'hip_pitch': 150,
'knee': 300,
'ankle': 40,
} # [N*m/rad]
damping = { 'hip_yaw': 2,
'hip_roll': 2,
'hip_pitch': 2,
'knee': 4,
'ankle': 2,
} # [N*m/rad] # [N*m*s/rad]
# action scale: target angle = actionScale * action + defaultAngle
action_scale = 0.25
# decimation: Number of control action updates @ sim DT per policy DT
decimation = 4
class asset( LeggedRobotCfg.asset ):
file = '{LEGGED_GYM_ROOT_DIR}/resources/robots/g1/urdf/g1.urdf'
name = "g1"
foot_name = "ankle_roll"
penalize_contacts_on = ["hip", "knee"]
terminate_after_contacts_on = ["torso"]
self_collisions = 1 # 1 to disable, 0 to enable...bitwise filter
flip_visual_attachments = False
class rewards( LeggedRobotCfg.rewards ):
soft_dof_pos_limit = 0.9
base_height_target = 0.728
class scales( LeggedRobotCfg.rewards.scales ):
tracking_lin_vel = 1.0
tracking_ang_vel = 0.5
lin_vel_z = -2.0
ang_vel_xy = -0.05
orientation = -1.0
base_height = -10.0
dof_acc = -2.5e-8
feet_air_time = 1.0
collision = 0.0
action_rate = -0.01
# torques = -0.0001
dof_pos_limits = -5.0
class G1RoughCfgPPO( LeggedRobotCfgPPO ):
class policy:
init_noise_std = 0.8
class algorithm( LeggedRobotCfgPPO.algorithm ):
entropy_coef = 0.01
class runner( LeggedRobotCfgPPO.runner ):
run_name = ''
experiment_name = 'g1'