unitree_rl_gym/README.md

97 lines
5.0 KiB
Markdown

# Unitree RL GYM
This is a simple example of using Unitree Robots for reinforcement learning, including Unitree Go2, H1, H1_2, G1
## 1. Installation
1. Create a new python virtual env with python 3.8
2. Install pytorch 2.3.1 with cuda-12.1:
```bash
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121
```
3. Install Isaac Gym
- Download and install Isaac Gym Preview 4 from [https://developer.nvidia.com/isaac-gym](https://developer.nvidia.com/isaac-gym)
- `cd isaacgym/python && pip install -e .`
- Try running an example `cd examples && python 1080_balls_of_solitude.py`
- For troubleshooting check docs isaacgym/docs/index.html
4. Install rsl_rl (PPO implementation)
- Clone [https://github.com/leggedrobotics/rsl_rl](https://github.com/leggedrobotics/rsl_rl)
- `cd rsl_rl && git checkout v1.0.2 && pip install -e .`
5. Install unitree_rl_gym
- Navigate to the folder `unitree_rl_gym`
- `pip install -e .`
6. Install unitree_sdk2py (Optional for depoly on real robot)
- Clone [https://github.com/unitreerobotics/unitree_sdk2_python](https://github.com/unitreerobotics/unitree_sdk2_python)
- `cd unitree_sdk2_python & pip install -e .`
## 2. Train in Isaac Gym
1. Train:
`python legged_gym/scripts/train.py --task=go2`
* To run on CPU add following arguments: `--sim_device=cpu`, `--rl_device=cpu` (sim on CPU and rl on GPU is possible).
* To run headless (no rendering) add `--headless`.
* **Important** : To improve performance, once the training starts press `v` to stop the rendering. You can then enable it later to check the progress.
* The trained policy is saved in `logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt`. Where `<experiment_name>` and `<run_name>` are defined in the train config.
* The following command line arguments override the values set in the config files:
* --task TASK: Task name.
* --resume: Resume training from a checkpoint
* --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
* --run_name RUN_NAME: Name of the run.
* --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
* --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
* --num_envs NUM_ENVS: Number of environments to create.
* --seed SEED: Random seed.
* --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
2. Play:`python legged_gym/scripts/play.py --task=go2`
* By default, the loaded policy is the last model of the last run of the experiment folder.
* Other runs/model iteration can be selected by setting `load_run` and `checkpoint` in the train config.
### 2.1 Play Demo
| Go2 | G1 | H1 | H1_2 |
|--- | --- | --- | --- |
| <video src="https://github.com/user-attachments/assets/98395d82-d3f6-4548-b6ee-8edfce70ac3e" controls="controls" width="400px"></video> | <video src="https://github.com/user-attachments/assets/2d2c2ea9-7816-4754-a3f0-d6d23912c569" controls="controls" width="400px"></video> | <video src="https://github.com/user-attachments/assets/622c8e3f-e82d-413a-b0ff-b0aca0fa22e5" controls="controls" width="400px"></video> | <video src="https://github.com/user-attachments/assets/1ec25467-4101-49c1-8c35-5c109e49e81e" controls="controls" width="400px"></video> |
## 3. Sim in Mujoco
### 3.1 Mujoco Usage
To execute sim2sim in mujoco, execute the following command:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py {config_name}
```
`config_name`: The file name of the configuration file. The configuration file will be found under `deploy/deploy_mujoco/configs/`, for example `g1.yaml`, `h1.yaml`, `h1_2.yaml`.
**example**:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml
```
### 3.2 Mujoco Demo
| G1 | H1 | H1_2 |
|--- | --- | --- |
| <video src="https://github.com/user-attachments/assets/9455b595-791e-4715-b280-0e70b9d45c53" controls="controls" width="400px"></video> | <video src="https://github.com/user-attachments/assets/2ff75b99-0186-4195-9ec8-69901e7b6700" controls="controls" width="400px"></video> | <video src="https://github.com/user-attachments/assets/8e3476ff-3d5c-45d4-a227-7565bf885d93" controls="controls" width="400px"></video> |
## 4. Depoly on Physical Robot
| G1 | H1 | H1_2 |
|--- | --- | --- |
| [<img src="https://oss-global-cdn.unitree.com/static/c5667475f51844628911cf032509d80a_1920x1080.png" width="400px">](https://oss-global-cdn.unitree.com/static/621806fb837c4f869e5c59efd1d93105.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/42d2332dc3004097896f33d0db027039_1920x1080.png" width="400px">](https://oss-global-cdn.unitree.com/static/9c61509fc4f74d21bb707a5fe3ae11aa.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/c49a03fa297a4d178ec3a5b01b9c0bbf_1920x1080.png" width="400px">](https://oss-global-cdn.unitree.com/static/e60a0fcd829e417f92a88e78463a695d.mp4) |
reference to [Deploy on Physical Robot(English)](deploy/deploy_real/README.md) | [实物部署(简体中文)](deploy/deploy_real/README.zh.md)