Go to file
craipy a577585705 update readme 2024-12-12 10:04:52 +08:00
deploy update readme 2024-12-12 10:04:52 +08:00
legged_gym update the trainning of g1,h1,h1_2 2024-11-29 17:02:27 +08:00
resources/robots update the trainning of g1,h1,h1_2 2024-11-29 17:02:27 +08:00
.gitignore add .gitignore 2024-07-25 10:25:38 +08:00
LICENSE first 2023-10-11 15:38:49 +08:00
README.md update readme 2024-12-12 10:04:52 +08:00
setup.py add the sim2sim code on mujoco 2024-11-29 17:02:34 +08:00

README.md

Unitree RL GYM

This is a simple example of using Unitree Robots for reinforcement learning, including Unitree Go2, H1, H1_2, G1

Isaac Gym Mujoco Physical

1. Installation

  1. Create a new python virtual env with python 3.8

  2. Install pytorch 2.3.1 with cuda-12.1:

    pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121
    
  3. Install Isaac Gym

    • Download and install Isaac Gym Preview 4 from https://developer.nvidia.com/isaac-gym
    • cd isaacgym/python && pip install -e .
    • Try running an example cd examples && python 1080_balls_of_solitude.py
    • For troubleshooting check docs isaacgym/docs/index.html
  4. Install rsl_rl (PPO implementation)

  5. Install unitree_rl_gym

    • Navigate to the folder unitree_rl_gym
    • pip install -e .
  6. Install unitree_sdk2py (Optional for depoly on real robot)

2. Train in Isaac Gym

  1. Train: python legged_gym/scripts/train.py --task=go2

    • To run on CPU add following arguments: --sim_device=cpu, --rl_device=cpu (sim on CPU and rl on GPU is possible).
    • To run headless (no rendering) add --headless.
    • Important : To improve performance, once the training starts press v to stop the rendering. You can then enable it later to check the progress.
    • The trained policy is saved in logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt. Where <experiment_name> and <run_name> are defined in the train config.
    • The following command line arguments override the values set in the config files:
    • --task TASK: Task name.
    • --resume: Resume training from a checkpoint
    • --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
    • --run_name RUN_NAME: Name of the run.
    • --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
    • --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
    • --num_envs NUM_ENVS: Number of environments to create.
    • --seed SEED: Random seed.
    • --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
  2. Play:python legged_gym/scripts/play.py --task=go2

    • By default, the loaded policy is the last model of the last run of the experiment folder.
    • Other runs/model iteration can be selected by setting load_run and checkpoint in the train config.

2.1 Play Demo

Go2 G1 H1 H1_2
go2 g1 h1 h1_2

3. Sim in Mujoco

3.1 Mujoco Usage

To execute sim2sim in mujoco, execute the following command:

python deploy/deploy_mujoco/deploy_mujoco.py {config_name}

config_name: The file name of the configuration file. The configuration file will be found under deploy/deploy_mujoco/configs/, for example g1.yaml, h1.yaml, h1_2.yaml.

example:

python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml

3.2 Mujoco Demo

G1 H1 H1_2
mujoco_g1 mujoco_h1 mujoco_h1_2

4. Depoly on Physical Robot

reference to Deploy on Physical Robot(English) | 实物部署(简体中文)