71 lines
2.9 KiB
Markdown
71 lines
2.9 KiB
Markdown
# Unitree RL GYM
|
|
|
|
This is a simple example of using Unitree Robots for reinforcement learning, including Unitree Go2, H1, H1_2, G1
|
|
|
|
### Installation
|
|
|
|
1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)
|
|
2. Install pytorch 1.10 with cuda-11.3:
|
|
|
|
```
|
|
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
|
|
|
|
```
|
|
3. Install Isaac Gym
|
|
|
|
- Download and install Isaac Gym Preview 4 from [https://developer.nvidia.com/isaac-gym](https://developer.nvidia.com/isaac-gym)
|
|
- `cd isaacgym/python && pip install -e .`
|
|
- Try running an example `cd examples && python 1080_balls_of_solitude.py`
|
|
- For troubleshooting check docs isaacgym/docs/index.html
|
|
4. Install rsl_rl (PPO implementation)
|
|
|
|
- Clone [https://github.com/leggedrobotics/rsl_rl](https://github.com/leggedrobotics/rsl_rl)
|
|
- `cd rsl_rl && git checkout v1.0.2 && pip install -e .`
|
|
|
|
5. Install unitree_rl_gym
|
|
|
|
- Navigate to the folder `unitree_rl_gym`
|
|
- `pip install -e .`
|
|
|
|
### Usage
|
|
|
|
1. Train:
|
|
`python legged_gym/scripts/train.py --task=go2`
|
|
|
|
* To run on CPU add following arguments: `--sim_device=cpu`, `--rl_device=cpu` (sim on CPU and rl on GPU is possible).
|
|
* To run headless (no rendering) add `--headless`.
|
|
* **Important** : To improve performance, once the training starts press `v` to stop the rendering. You can then enable it later to check the progress.
|
|
* The trained policy is saved in `logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt`. Where `<experiment_name>` and `<run_name>` are defined in the train config.
|
|
* The following command line arguments override the values set in the config files:
|
|
* --task TASK: Task name.
|
|
* --resume: Resume training from a checkpoint
|
|
* --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
|
|
* --run_name RUN_NAME: Name of the run.
|
|
* --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
|
|
* --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
|
|
* --num_envs NUM_ENVS: Number of environments to create.
|
|
* --seed SEED: Random seed.
|
|
* --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
|
|
2. Play:`python legged_gym/scripts/play.py --task=go2`
|
|
|
|
* By default, the loaded policy is the last model of the last run of the experiment folder.
|
|
* Other runs/model iteration can be selected by setting `load_run` and `checkpoint` in the train config.
|
|
|
|
### Robots Demo
|
|
|
|
1. Go2
|
|
|
|
https://github.com/user-attachments/assets/98395d82-d3f6-4548-b6ee-8edfce70ac3e
|
|
|
|
2. H1
|
|
|
|
https://github.com/user-attachments/assets/a9475a63-ea06-4327-bfa6-6a0f8065fa1c
|
|
|
|
3. H1-2
|
|
|
|
https://github.com/user-attachments/assets/d6cdee70-8f8a-4a50-b219-df31b269b083
|
|
|
|
4. G1
|
|
|
|
https://github.com/user-attachments/assets/0b554137-76bc-43f9-97e1-dd704a33d6a9
|