unitree_rl_gym/deploy/deploy_real/deploy_real_ros_eetrack.py

726 lines
26 KiB
Python

from legged_gym import LEGGED_GYM_ROOT_DIR
from typing import Union, List
import numpy as np
import time
import torch
import rclpy as rp
from unitree_hg.msg import LowCmd as LowCmdHG, LowState as LowStateHG
from unitree_go.msg import LowCmd as LowCmdGo, LowState as LowStateGo
from tf2_ros import TransformException
from tf2_ros.buffer import Buffer
from tf2_ros.transform_listener import TransformListener
from common.command_helper_ros import create_damping_cmd, create_zero_cmd, init_cmd_hg, init_cmd_go, MotorMode
from common.rotation_helper import get_gravity_orientation, transform_imu_data
from common.remote_controller import RemoteController, KeyMap
from config import Config
from common.crc import CRC
from enum import Enum
import pinocchio as pin
from ikctrl import IKCtrl, xyzw2wxyz
from yourdfpy import URDF
from math_utils import *
import random as rd
class Mode(Enum):
wait = 0
zero_torque = 1
default_pos = 2
damping = 3
policy = 4
null = 5
def axis_angle_from_quat(quat: np.ndarray, eps: float = 1.0e-6) -> np.ndarray:
"""Convert rotations given as quaternions to axis/angle.
Args:
quat: The quaternion orientation in (w, x, y, z). Shape is (..., 4).
eps: The tolerance for Taylor approximation. Defaults to 1.0e-6.
Returns:
Rotations given as a vector in axis angle form. Shape is (..., 3).
The vector's magnitude is the angle turned anti-clockwise in radians around the vector's direction.
Reference:
https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L526-L554
"""
# Modified to take in quat as [q_w, q_x, q_y, q_z]
# Quaternion is [q_w, q_x, q_y, q_z] = [cos(theta/2), n_x * sin(theta/2), n_y * sin(theta/2), n_z * sin(theta/2)]
# Axis-angle is [a_x, a_y, a_z] = [theta * n_x, theta * n_y, theta * n_z]
# Thus, axis-angle is [q_x, q_y, q_z] / (sin(theta/2) / theta)
# When theta = 0, (sin(theta/2) / theta) is undefined
# However, as theta --> 0, we can use the Taylor approximation 1/2 -
# theta^2 / 48
quat = quat * (1.0 - 2.0 * (quat[..., 0:1] < 0.0))
mag = np.linalg.norm(quat[..., 1:], axis=-1)
half_angle = np.arctan2(mag, quat[..., 0])
angle = 2.0 * half_angle
# check whether to apply Taylor approximation
sin_half_angles_over_angles = np.where(
np.abs(angle) > eps,
np.sin(half_angle) / angle,
0.5 - angle * angle / 48
)
return quat[..., 1:4] / sin_half_angles_over_angles[..., None]
def quat_rotate(q: np.ndarray, v: np.ndarray) -> np.ndarray:
"""Rotate a vector by a quaternion along the last dimension of q and v.
Args:
q: The quaternion in (w, x, y, z). Shape is (..., 4).
v: The vector in (x, y, z). Shape is (..., 3).
Returns:
The rotated vector in (x, y, z). Shape is (..., 3).
"""
q_w = q[..., 0]
q_vec = q[..., 1:]
a = v * (2.0 * q_w**2 - 1.0)[..., None]
b = np.cross(q_vec, v, axis=-1) * q_w[..., None] * 2.0
c = q_vec * np.einsum("...i,...i->...", q_vec, v)[..., None] * 2.0
return a + b + c
def quat_rotate_inverse(q: np.ndarray, v: np.ndarray) -> np.ndarray:
"""Rotate a vector by the inverse of a quaternion along the last dimension of q and v.
Args:
q: The quaternion in (w, x, y, z). Shape is (..., 4).
v: The vector in (x, y, z). Shape is (..., 3).
Returns:
The rotated vector in (x, y, z). Shape is (..., 3).
"""
q_w = q[..., 0]
q_vec = q[..., 1:]
a = v * (2.0 * q_w**2 - 1.0)[..., None]
b = np.cross(q_vec, v, axis=-1) * q_w[..., None] * 2.0
c = q_vec * np.einsum("...i,...i->...", q_vec, v)[..., None] * 2.0
return a - b + c
def body_pose(
tf_buffer,
frame: str,
ref_frame: str = 'pelvis',
stamp=None,
rot_type: str = 'axa'):
""" --> tf does not exist """
if stamp is None:
stamp = rp.time.Time()
try:
# t = "ref{=pelvis}_from_frame" transform
t = tf_buffer.lookup_transform(
ref_frame, # to
frame, # from
stamp)
except TransformException as ex:
print(f'Could not transform {frame} to {ref_frame}: {ex}')
raise
txn = t.transform.translation
rxn = t.transform.rotation
xyz = np.array([txn.x, txn.y, txn.z])
quat_wxyz = np.array([rxn.w, rxn.x, rxn.y, rxn.z])
xyz = np.array(xyz)
if rot_type == 'axa':
axa = axis_angle_from_quat(quat_wxyz)
axa = (axa + np.pi) % (2 * np.pi)
return (xyz, axa)
elif rot_type == 'quat':
return (xyz, quat_wxyz)
raise ValueError(f"Unknown rot_type: {rot_type}")
from common.xml_helper import extract_link_data
def compute_com(tf_buffer, body_frames: List[str]):
"""compute com of body frames"""
mass_list = []
com_list = []
# bring default values
com_data = extract_link_data('../../resources/robots/g1_description/g1_29dof_rev_1_0.xml')
# iterate for frames
for frame in body_frames:
try:
frame_data = com_data[frame]
except KeyError:
continue
try:
link_pos, link_wxyz = body_pose(tf_buffer,
frame, rot_type='quat')
except TransformException:
continue
com_pos_b, com_wxyz = frame_data['pos'], frame_data['quat']
# compute com from world coordinates
# NOTE 'math_utils' package will be brought from isaaclab
com_pos = link_pos + quat_rotate(link_wxyz, com_pos_b)
com_list.append(com_pos)
# get math
mass = frame_data['mass']
mass_list.append(mass)
com = sum([m * pos for m, pos in zip(mass_list, com_list)]) / sum(mass_list)
return com
def index_map(k_to, k_from):
"""
returns an index mapping from k_from to k_to;
i.e. k_to[index_map] = k_from
Missing values are set to -1.
"""
out = []
for k in k_to:
try:
i = k_from.index(k)
except ValueError:
i = -1
out.append(i)
return out
def interpolate_position(pos1, pos2, n_segments):
increments = (pos2 - pos1) / n_segments
interp_pos = [pos1 + increments * p for p in range(n_segments)]
interp_pos.append(pos2)
return interp_pos
class eetrack:
def __init__(self, root_state_w):
self.eetrack_midpt = root_state_w.clone()
self.eetrack_midpt[1] += 0.3
self.eetrack_end = None
self.eetrack_subgoal = None
self.number_of_subgoals = 30
self.eetrack_line_length = 0.3
self.device = "cuda"
self.create_eetrack()
self.eetrack_subgoal = self.create_subgoal()
self.sg_idx = 0
self.init_time = rp.time.Time() + 1.0 # first subgoal sampling time = 1.0s
def create_eetrack(self):
self.eetrack_start = self.eetrack_midpt.clone()
self.eetrack_end = self.eetrack_midpt.clone()
is_hor = rd.choice([True, False])
eetrack_offset = rd.uniform(-0.5, 0.5)
# For testing
is_hor = True
eetrack_offset = 0.0
if is_hor:
self.eetrack_start[2] += eetrack_offset
self.eetrack_end[2] += eetrack_offset
self.eetrack_start[0] -= (self.eetrack_line_length) / 2.
self.eetrack_end[0] += (self.eetrack_line_length) / 2.
else:
self.eetrack_start[0] += eetrack_offset
self.eetrack_end[0] += eetrack_offset
self.eetrack_start[2] += (self.eetrack_line_length) / 2.
self.eetrack_end[2] -= (self.eetrack_line_length) / 2.
return self.eetrack_start, self.eetrack_end
def create_direction(self):
angle_from_eetrack_line = torch.rand(1, device=self.device) * np.pi
angle_from_xyplane_in_global_frame = torch.rand(1, device=self.device) * np.pi - np.pi/2
# For testing
angle_from_eetrack_line = torch.rand(1, device=self.device) * np.pi/2
angle_from_xyplane_in_global_frame = torch.rand(1, device=self.device) * 0
roll = torch.zeros(1, device=self.device)
pitch = angle_from_xyplane_in_global_frame
yaw = angle_from_eetrack_line
euler = torch.stack([roll, pitch, yaw], dim=1)
quat = math_utils.quat_from_euler_xyz(euler[:,0], euler[:,1], euler[:,2])
return quat
def create_subgoal(self):
eetrack_subgoals = interpolate_position(self.eetrack_start, self.eetrack_end, self.number_of_subgoals)
eetrack_subgoals = [
(
l.clone().to(self.device, dtype=torch.float32)
if isinstance(l, torch.Tensor)
else torch.tensor(l, device=self.device, dtype=torch.float32)
)
for l in eetrack_subgoals
]
eetrack_subgoals = torch.stack(eetrack_subgoals,axis=1)
eetrack_ori = self.create_direction().unsqueeze(1).repeat(1, self.number_of_subgoals + 1, 1)
# welidng_subgoals -> Nenv x Npoints x (3 + 4)
return torch.cat([eetrack_subgoals, eetrack_ori], dim=2)
def update_command(self):
time = self.init_time - rp.time.Time()
if (time>=0):
self.sg_idx = time / 0.1 + 1
self.sg_idx.clamp_(0, self.number_of_subgoals + 1)
self.next_command_s_left = self.eetrack_subgoal[self.sg_idx]
def get_command(self, root_state_w):
self.update_command()
pos_hand_b_left, quat_hand_b_left = body_pose_axa("left_hand_palm_link")
lerp_command_w_left = self.next_command_s_left
# lerp_command_b_left = math_utils.subtract_frame_transforms(
# root_state_w[..., 0:3],
# root_state_w[..., 3:7],
# lerp_command_w_left[:, 0:3],
# lerp_command_w_left[:, 3:7],
# )
lerp_command_b_left = lerp_command_w_left
pos_delta_b_left, rot_delta_b_left = math_utils.compute_pose_error(
pos_hand_b_left,
quat_hand_b_left,
lerp_command_b_left[:, :3],
lerp_command_b_left[:, 3:],
)
axa_delta_b_left = math_utils.wrap_to_pi(rot_delta_b_left)
hand_command = torch.cat((pos_delta_b_left, axa_delta_b_left), dim=-1)
return hand_command
class Observation:
def __init__(self,
urdf_path: str,
config,
tf_buffer: Buffer):
self.links = list(URDF.load(urdf_path).link_map.keys())
self.config = config
self.num_lab_joint = len(config.lab_joint)
self.tf_buffer = tf_buffer
self.lab_from_mot = index_map(config.lab_joint,
config.motor_joint)
def __call__(self,
low_state: LowStateHG,
last_action: np.ndarray,
hands_command: np.ndarray
):
lab_from_mot = self.lab_from_mot
num_lab_joint = self.num_lab_joint
# observation terms (order preserved)
# FIXME(ycho): dummy value
# base_lin_vel = np.zeros(3)
ang_vel = np.array([low_state.imu_state.gyroscope],
dtype=np.float32)
quat = low_state.imu_state.quaternion
if self.config.imu_type == "torso":
waist_yaw = low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].q
waist_yaw_omega = low_state.motor_state[self.config.arm_waist_joint2motor_idx[0]].dq
quat, ang_vel = transform_imu_data(
waist_yaw=waist_yaw,
waist_yaw_omega=waist_yaw_omega,
imu_quat=quat,
imu_omega=ang_vel)
base_ang_vel = ang_vel
# TODO(ycho): check if the convention "q_base^{-1} @ g" holds.
projected_gravity = get_gravity_orientation(quat)
fp_l = body_pose(self.tf_buffer, 'left_ankle_roll_link')
fp_r = body_pose(self.tf_buffer, 'right_ankle_roll_link')
foot_pose = np.concatenate([fp_l[0], fp_r[0], fp_l[1], fp_r[1]])
hp_l = body_pose(self.tf_buffer, 'left_hand_palm_link')
hp_r = body_pose(self.tf_buffer, 'right_hand_palm_link')
hand_pose = np.concatenate([hp_l[0], hp_r[0], hp_l[1], hp_r[1]])
# FIXME(ycho): implement com_pos_wrt_pelvis
projected_com = compute_com(self.tf_buffer, self.links)
# projected_zmp = _ # IMPOSSIBLE
# Map `low_state` to index-mapped joint_{pos,vel}
joint_pos = np.zeros(num_lab_joint,
dtype=np.float32)
joint_vel = np.zeros(num_lab_joint,
dtype=np.float32)
joint_pos[lab_from_mot] = [low_state.motor_state[i_mot].q for i_mot in
range(len(lab_from_mot))]
joint_pos -= config.lab_joint_offsets
joint_vel[lab_from_mot] = [low_state.motor_state[i_mot].dq for i_mot in
range(len(lab_from_mot))]
actions = last_action
# Given as delta_pos {xyz,axa}; i.e. 6D vector
# hands_command = self.eetrack.get_command()
right_arm_com = compute_com(self.tf_buffer, [
"right_shoulder_pitch_link",
"right_shoulder_roll_link",
"right_shoulder_yaw_link",
"right_elbow_link",
"right_wrist_pitch_link"
"right_wrist_roll_link",
"right_wrist_yaw_link"
])
left_arm_com = compute_com(self.tf_buffer, [
"left_shoulder_pitch_link",
"left_shoulder_roll_link",
"left_shoulder_yaw_link",
"left_elbow_link",
"left_wrist_pitch_link"
"left_wrist_roll_link",
"left_wrist_yaw_link"
])
if True: # hack
lf_from_pelvis = self.tf_buffer.lookup_transform(
'left_ankle_roll_link', # to
'pelvis',
rp.time.Time()
)
rf_from_pelvis = self.tf_buffer.lookup_transform(
'right_ankle_roll_link', # to
'pelvis',
rp.time.Time()
)
# NOTE(ycho): we assume at least one of the feet is on the ground
# and use the higher of the two as the pelvis height.
pelvis_height = max(lf_from_pelvis.transform.translation.z,
rf_from_pelvis.transform.translation.z)
pelvis_height = [pelvis_height]
else:
pelvis_height = np.abs(np.dot(
projected_gravity, # world frame
fp_l[0]
)
)
obs = [
base_ang_vel,
projected_gravity,
foot_pose,
hand_pose,
projected_com,
joint_pos,
joint_vel,
actions,
hands_command,
right_arm_com,
left_arm_com,
pelvis_height
]
print([np.shape(o) for o in obs])
return np.concatenate(obs, axis=-1)
class Controller:
def __init__(self, config: Config) -> None:
self.config = config
self.remote_controller = RemoteController()
# Initialize the policy network
self.policy = torch.jit.load(config.policy_path)
self.action = np.zeros(config.num_actions, dtype=np.float32)
self.ikctrl = IKCtrl(
'../../resources/robots/g1_description/g1_29dof_with_hand_rev_1_0.urdf',
config.arm_joint)
self.lim_lo_pin = self.ikctrl.robot.model.lowerPositionLimit
self.lim_hi_pin = self.ikctrl.robot.model.upperPositionLimit
# == build index map ==
arm_joint = config.arm_joint
self.mot_from_pin = index_map(
self.config.motor_joint,
self.ikctrl.joint_names)
self.pin_from_mot = index_map(
self.ikctrl.joint_names,
self.config.motor_joint
)
self.mot_from_arm = index_map(
self.config.motor_joint,
self.config.arm_joint
)
self.mot_from_nonarm = index_map(
self.config.motor_joint,
self.config.non_arm_joint
)
# Data buffers
self.obs = np.zeros(config.num_obs, dtype=np.float32)
self.cmd = np.array([0.0, 0, 0])
self.counter = 0
# ROS handles & helpers
rp.init()
self._node = rp.create_node("low_level_cmd_sender")
self.tf_buffer = Buffer()
self.tf_listener = TransformListener(self.tf_buffer, self._node)
self.obsmap = Observation(
'../../resources/robots/g1_description/g1_29dof_with_hand_rev_1_0.urdf',
config, self.tf_buffer)
# FIXME(ycho): give `root_state_w`
# self.eetrack = eetrack(root_state_w=None)
if config.msg_type == "hg":
# g1 and h1_2 use the hg msg type
self.low_cmd = LowCmdHG()
self.low_state = LowStateHG()
self.lowcmd_publisher_ = self._node.create_publisher(LowCmdHG,
'lowcmd', 10)
self.lowstate_subscriber = self._node.create_subscription(
LowStateHG, 'lowstate', self.LowStateHgHandler, 10)
self.mode_pr_ = MotorMode.PR
self.mode_machine_ = 0
elif config.msg_type == "go":
raise ValueError(f"{config.msg_type} is not implemented yet.")
else:
raise ValueError("Invalid msg_type")
# wait for the subscriber to receive data
# self.wait_for_low_state()
# Initialize the command msg
if config.msg_type == "hg":
init_cmd_hg(self.low_cmd, self.mode_machine_, self.mode_pr_)
elif config.msg_type == "go":
init_cmd_go(self.low_cmd, weak_motor=self.config.weak_motor)
self.mode = Mode.wait
self._mode_change = True
self._timer = self._node.create_timer(
self.config.control_dt, self.run_wrapper)
self._terminate = False
try:
rp.spin(self._node)
except KeyboardInterrupt:
print("KeyboardInterrupt")
finally:
self._node.destroy_timer(self._timer)
create_damping_cmd(self.low_cmd)
self.send_cmd(self.low_cmd)
self._node.destroy_node()
rp.shutdown()
print("Exit")
def LowStateHgHandler(self, msg: LowStateHG):
self.low_state = msg
self.mode_machine_ = self.low_state.mode_machine
self.remote_controller.set(self.low_state.wireless_remote)
def LowStateGoHandler(self, msg: LowStateGo):
self.low_state = msg
self.remote_controller.set(self.low_state.wireless_remote)
def send_cmd(self, cmd: Union[LowCmdGo, LowCmdHG]):
cmd.mode_machine = self.mode_machine_
cmd.crc = CRC().Crc(cmd)
size = len(cmd.motor_cmd)
self.lowcmd_publisher_.publish(cmd)
def wait_for_low_state(self):
while self.low_state.crc == 0:
print(self.low_state)
time.sleep(self.config.control_dt)
print("Successfully connected to the robot.")
def zero_torque_state(self):
if self.remote_controller.button[KeyMap.start] == 1:
self._mode_change = True
self.mode = Mode.default_pos
else:
create_zero_cmd(self.low_cmd)
self.send_cmd(self.low_cmd)
def prepare_default_pos(self):
# move time 2s
total_time = 2
self.counter = 0
self._num_step = int(total_time / self.config.control_dt)
dof_idx = self.config.leg_joint2motor_idx + self.config.arm_waist_joint2motor_idx
kps = self.config.kps + self.config.arm_waist_kps
kds = self.config.kds + self.config.arm_waist_kds
self._kps = [float(kp) for kp in kps]
self._kds = [float(kd) for kd in kds]
self._default_pos = np.concatenate(
(self.config.default_angles, self.config.arm_waist_target), axis=0)
self._dof_size = len(dof_idx)
self._dof_idx = dof_idx
# record the current pos
self._init_dof_pos = np.zeros(self._dof_size,
dtype=np.float32)
for i in range(self._dof_size):
self._init_dof_pos[i] = self.low_state.motor_state[dof_idx[i]].q
def move_to_default_pos(self):
# move to default pos
if self.counter < self._num_step:
alpha = self.counter / self._num_step
for j in range(self._dof_size):
motor_idx = self._dof_idx[j]
target_pos = self._default_pos[j]
self.low_cmd.motor_cmd[motor_idx].q = (
self._init_dof_pos[j] * (1 - alpha) + target_pos * alpha)
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[j]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[j]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
self.send_cmd(self.low_cmd)
self.counter += 1
else:
self._mode_change = True
self.mode = Mode.damping
def default_pos_state(self):
if self.remote_controller.button[KeyMap.A] != 1:
for i in range(len(self.config.leg_joint2motor_idx)):
motor_idx = self.config.leg_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(
self.config.default_angles[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
for i in range(len(self.config.arm_waist_joint2motor_idx)):
motor_idx = self.config.arm_waist_joint2motor_idx[i]
self.low_cmd.motor_cmd[motor_idx].q = float(
self.config.arm_waist_target[i])
self.low_cmd.motor_cmd[motor_idx].dq = 0.0
self.low_cmd.motor_cmd[motor_idx].kp = self._kps[i]
self.low_cmd.motor_cmd[motor_idx].kd = self._kds[i]
self.low_cmd.motor_cmd[motor_idx].tau = 0.0
self.send_cmd(self.low_cmd)
else:
self._mode_change = True
self.mode = Mode.policy
def run_policy(self):
if self.remote_controller.button[KeyMap.select] == 1:
self._mode_change = True
self.mode = Mode.null
return
self.counter += 1
# TODO(ycho): consider using `cmd` for `hands_command`
# self.cmd[0] = self.remote_controller.ly
# self.cmd[1] = self.remote_controller.lx * -1
# self.cmd[2] = self.remote_controller.rx * -1
# FIXME(ycho): implement `_hands_command_`
# to use the output of `eetrack`.
_hands_command_ = np.zeros(6)
self.obs[:] = self.obsmap(self.low_state,
self.action,
_hands_command_)
# Get the action from the policy network
obs_tensor = torch.from_numpy(self.obs).unsqueeze(0)
self.action = self.policy(obs_tensor).detach().numpy().squeeze()
non_arm_joint_pos = self.action[..., :22]
left_arm_residual = self.action[..., 22:29]
q_pin = np.zeros_like(self.ikctrl.cfg.q0)
for i_mot in range(len(self.config.motor_joint)):
i_pin = self.pin_from_mot[i_mot]
q_pin[i_pin] = self.low_state.motor_state[i_mot].q
res_q_ik = self.ikctrl(
q_pin,
_hands_command_
)
target_dof_pos = np.zeros(29)
for i_act in range(len(res_q_ik)):
i_mot = self.mot_from_act[i_act]
i_pin = self.pin_from_mot[i_mot]
target_q = (
self.low_state.motor_state[i_mot].q
+ res_q_ik[i_act]
+ np.clip(0.3 * left_arm_residual[i_act],
-0.2, 0.2)
)
target_q = np.clip(target_q,
self.lim_lo_pin[i_pin],
self.lim_hi_pin[i_pin])
target_dof_pos[i_mot] = target_q
# Build low cmd
for i in range(len(self.config.motor_joint)):
self.low_cmd.motor_cmd[i].q = float(target_dof_pos[i])
self.low_cmd.motor_cmd[i].dq = 0.0
self.low_cmd.motor_cmd[i].kp = 0.0 * float(self.config.kps[i])
self.low_cmd.motor_cmd[i].kd = 0.0 * float(self.config.kds[i])
self.low_cmd.motor_cmd[i].tau = 0.0
# send the command
self.send_cmd(self.low_cmd)
def run_wrapper(self):
# print("hello", self.mode,
# self.mode == Mode.zero_torque)
if self.mode == Mode.wait:
if self.low_state.crc != 0:
self.mode = Mode.zero_torque
self.low_cmd.mode_machine = self.mode_machine_
print("Successfully connected to the robot.")
elif self.mode == Mode.zero_torque:
if self._mode_change:
print("Enter zero torque state.")
print("Waiting for the start signal...")
self._mode_change = False
self.zero_torque_state()
elif self.mode == Mode.default_pos:
if self._mode_change:
print("Moving to default pos.")
self._mode_change = False
self.prepare_default_pos()
self.move_to_default_pos()
elif self.mode == Mode.damping:
if self._mode_change:
print("Enter default pos state.")
print("Waiting for the Button A signal...")
self._mode_change = False
self.default_pos_state()
elif self.mode == Mode.policy:
if self._mode_change:
print("Run policy.")
self._mode_change = False
self.counter = 0
self.run_policy()
elif self.mode == Mode.null:
self._terminate = True
# time.sleep(self.config.control_dt)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"config",
type=str,
help="config file name in the configs folder",
default="g1.yaml")
args = parser.parse_args()
# Load config
config_path = f"{LEGGED_GYM_ROOT_DIR}/deploy/deploy_real/configs/{args.config}"
config = Config(config_path)
controller = Controller(config)