Here are the ROS simulation packages for Unitree robots, You can load robots and joint controllers in Gazebo, so you can perform low-level control (control the torque, position and angular velocity) of the robot joints. Please be aware that the Gazebo simulation cannot do high-level control, namely walking. Aside from these simulation functions, you can also control your real robots in ROS with the [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real) packages. For real robots, you can do high-level and low-level control using our ROS packages.
* [unitree_legged_msgs](https://github.com/unitreerobotics/unitree_ros_to_real): `unitree_legged_msgs` is a package under [unitree_ros_to_real](https://github.com/unitreerobotics/unitree_ros_to_real).
It contains the joints controllers for Gazebo simulation, which allows users to control joints with position, velocity and torque. Refer to "[unitree_ros/unitree_controller/src/servo.cpp](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/servo.cpp)" for joint control examples in different modes.
Namely the description of Go1, A1, Aliengo and Laikago. Each package includes mesh, urdf and xacro files of robot. Take Laikago for example, you can check the model in Rviz by:
Where the `rname` means robot name, which can be `laikago`, `aliengo`, `a1` or `go1`. The `wname` means world name, which can be `earth`, `space` or `stairs`. And the default value of `rname` is `laikago`, while the default value of `wname` is `earth`. In Gazebo, the robot should be lying on the ground with joints not activated.
The robot will turn around the origin, which is the movement under the world coordinate frame. And inside of the source file `[move_publisher](https://github.com/unitreerobotics/unitree_ros/blob/master/unitree_controller/src/move_publisher.cpp)`, we also provide the method to move using the robot coordinate frame. You can change the value of `def_frame` to `coord::ROBOT` and run the catkin_make again, then the `unitree_move_publisher` will move robot under its own coordinate frame.