walk-these-ways-go2/go1_gym_learn/ppo/rollout_storage.py

180 lines
9.0 KiB
Python
Raw Normal View History

2024-01-28 17:11:38 +08:00
# License: see [LICENSE, LICENSES/rsl_rl/LICENSE]
import torch
from go1_gym_learn.utils import split_and_pad_trajectories
class RolloutStorage:
class Transition:
def __init__(self):
self.observations = None
self.privileged_observations = None
self.observation_histories = None
self.critic_observations = None
self.actions = None
self.rewards = None
self.dones = None
self.values = None
self.actions_log_prob = None
self.action_mean = None
self.action_sigma = None
self.env_bins = None
def clear(self):
self.__init__()
def __init__(self, num_envs, num_transitions_per_env, obs_shape, privileged_obs_shape, obs_history_shape, actions_shape, device='cpu'):
self.device = device
self.obs_shape = obs_shape
self.privileged_obs_shape = privileged_obs_shape
self.obs_history_shape = obs_history_shape
self.actions_shape = actions_shape
# Core
self.observations = torch.zeros(num_transitions_per_env, num_envs, *obs_shape, device=self.device)
self.privileged_observations = torch.zeros(num_transitions_per_env, num_envs, *privileged_obs_shape, device=self.device)
self.observation_histories = torch.zeros(num_transitions_per_env, num_envs, *obs_history_shape, device=self.device)
self.rewards = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.actions = torch.zeros(num_transitions_per_env, num_envs, *actions_shape, device=self.device)
self.dones = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device).byte()
# For PPO
self.actions_log_prob = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.values = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.returns = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.advantages = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.mu = torch.zeros(num_transitions_per_env, num_envs, *actions_shape, device=self.device)
self.sigma = torch.zeros(num_transitions_per_env, num_envs, *actions_shape, device=self.device)
self.env_bins = torch.zeros(num_transitions_per_env, num_envs, 1, device=self.device)
self.num_transitions_per_env = num_transitions_per_env
self.num_envs = num_envs
self.step = 0
def add_transitions(self, transition: Transition):
if self.step >= self.num_transitions_per_env:
raise AssertionError("Rollout buffer overflow")
self.observations[self.step].copy_(transition.observations)
self.privileged_observations[self.step].copy_(transition.privileged_observations)
self.observation_histories[self.step].copy_(transition.observation_histories)
self.actions[self.step].copy_(transition.actions)
self.rewards[self.step].copy_(transition.rewards.view(-1, 1))
self.dones[self.step].copy_(transition.dones.view(-1, 1))
self.values[self.step].copy_(transition.values)
self.actions_log_prob[self.step].copy_(transition.actions_log_prob.view(-1, 1))
self.mu[self.step].copy_(transition.action_mean)
self.sigma[self.step].copy_(transition.action_sigma)
self.env_bins[self.step].copy_(transition.env_bins.view(-1, 1))
self.step += 1
def clear(self):
self.step = 0
def compute_returns(self, last_values, gamma, lam):
advantage = 0
for step in reversed(range(self.num_transitions_per_env)):
if step == self.num_transitions_per_env - 1:
next_values = last_values
else:
next_values = self.values[step + 1]
next_is_not_terminal = 1.0 - self.dones[step].float()
delta = self.rewards[step] + next_is_not_terminal * gamma * next_values - self.values[step]
advantage = delta + next_is_not_terminal * gamma * lam * advantage
self.returns[step] = advantage + self.values[step]
# Compute and normalize the advantages
self.advantages = self.returns - self.values
self.advantages = (self.advantages - self.advantages.mean()) / (self.advantages.std() + 1e-8)
def get_statistics(self):
done = self.dones
done[-1] = 1
flat_dones = done.permute(1, 0, 2).reshape(-1, 1)
done_indices = torch.cat((flat_dones.new_tensor([-1], dtype=torch.int64), flat_dones.nonzero(as_tuple=False)[:, 0]))
trajectory_lengths = (done_indices[1:] - done_indices[:-1])
return trajectory_lengths.float().mean(), self.rewards.mean()
def mini_batch_generator(self, num_mini_batches, num_epochs=8):
batch_size = self.num_envs * self.num_transitions_per_env
mini_batch_size = batch_size // num_mini_batches
indices = torch.randperm(num_mini_batches*mini_batch_size, requires_grad=False, device=self.device)
observations = self.observations.flatten(0, 1)
privileged_obs = self.privileged_observations.flatten(0, 1)
obs_history = self.observation_histories.flatten(0, 1)
critic_observations = observations
actions = self.actions.flatten(0, 1)
values = self.values.flatten(0, 1)
returns = self.returns.flatten(0, 1)
old_actions_log_prob = self.actions_log_prob.flatten(0, 1)
advantages = self.advantages.flatten(0, 1)
old_mu = self.mu.flatten(0, 1)
old_sigma = self.sigma.flatten(0, 1)
old_env_bins = self.env_bins.flatten(0, 1)
for epoch in range(num_epochs):
for i in range(num_mini_batches):
start = i*mini_batch_size
end = (i+1)*mini_batch_size
batch_idx = indices[start:end]
obs_batch = observations[batch_idx]
critic_observations_batch = critic_observations[batch_idx]
privileged_obs_batch = privileged_obs[batch_idx]
obs_history_batch = obs_history[batch_idx]
actions_batch = actions[batch_idx]
target_values_batch = values[batch_idx]
returns_batch = returns[batch_idx]
old_actions_log_prob_batch = old_actions_log_prob[batch_idx]
advantages_batch = advantages[batch_idx]
old_mu_batch = old_mu[batch_idx]
old_sigma_batch = old_sigma[batch_idx]
env_bins_batch = old_env_bins[batch_idx]
yield obs_batch, critic_observations_batch, privileged_obs_batch, obs_history_batch, actions_batch, target_values_batch, advantages_batch, returns_batch, \
old_actions_log_prob_batch, old_mu_batch, old_sigma_batch, None, env_bins_batch
# for RNNs only
def reccurent_mini_batch_generator(self, num_mini_batches, num_epochs=8):
padded_obs_trajectories, trajectory_masks = split_and_pad_trajectories(self.observations, self.dones)
padded_privileged_obs_trajectories, trajectory_masks = split_and_pad_trajectories(self.privileged_observations, self.dones)
padded_obs_history_trajectories, trajectory_masks = split_and_pad_trajectories(self.observation_histories, self.dones)
padded_critic_obs_trajectories = padded_obs_trajectories
mini_batch_size = self.num_envs // num_mini_batches
for ep in range(num_epochs):
first_traj = 0
for i in range(num_mini_batches):
start = i*mini_batch_size
stop = (i+1)*mini_batch_size
dones = self.dones.squeeze(-1)
last_was_done = torch.zeros_like(dones, dtype=torch.bool)
last_was_done[1:] = dones[:-1]
last_was_done[0] = True
trajectories_batch_size = torch.sum(last_was_done[:, start:stop])
last_traj = first_traj + trajectories_batch_size
masks_batch = trajectory_masks[:, first_traj:last_traj]
obs_batch = padded_obs_trajectories[:, first_traj:last_traj]
critic_obs_batch = padded_critic_obs_trajectories[:, first_traj:last_traj]
privileged_obs_batch = padded_privileged_obs_trajectories[:, first_traj:last_traj]
obs_history_batch = padded_obs_history_trajectories[:, first_traj:last_traj]
actions_batch = self.actions[:, start:stop]
old_mu_batch = self.mu[:, start:stop]
old_sigma_batch = self.sigma[:, start:stop]
returns_batch = self.returns[:, start:stop]
advantages_batch = self.advantages[:, start:stop]
values_batch = self.values[:, start:stop]
old_actions_log_prob_batch = self.actions_log_prob[:, start:stop]
yield obs_batch, critic_obs_batch, privileged_obs_batch, obs_history_batch, actions_batch, values_batch, advantages_batch, returns_batch, \
old_actions_log_prob_batch, old_mu_batch, old_sigma_batch, masks_batch
first_traj = last_traj