import glob import pickle as pkl import lcm import sys from go2_gym_deploy.utils.deployment_runner import DeploymentRunner from go2_gym_deploy.envs.lcm_agent import LCMAgent from go2_gym_deploy.utils.cheetah_state_estimator import StateEstimator from go2_gym_deploy.utils.command_profile import * import pathlib # lcm多播通信的标准格式 lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=255") def load_and_run_policy(label, experiment_name, max_vel=1.0, max_yaw_vel=1.0): # load agent dirs = glob.glob(f"../../runs/{label}/*") logdir = sorted(dirs)[0] # with open(logdir+"/parameters.pkl", 'rb') as file: with open(logdir+"/parameters.pkl", 'rb') as file: pkl_cfg = pkl.load(file) print(pkl_cfg.keys()) cfg = pkl_cfg["Cfg"] print(cfg.keys()) print('Config successfully loaded!') se = StateEstimator(lc) control_dt = 0.02 command_profile = RCControllerProfile(dt=control_dt, state_estimator=se, x_scale=max_vel, y_scale=0.6, yaw_scale=max_yaw_vel) hardware_agent = LCMAgent(cfg, se, command_profile) se.spin() from go2_gym_deploy.envs.history_wrapper import HistoryWrapper hardware_agent = HistoryWrapper(hardware_agent) print('Agent successfully created!') policy = load_policy(logdir) print('Policy successfully loaded!') # load runner root = f"{pathlib.Path(__file__).parent.resolve()}/../../logs/" pathlib.Path(root).mkdir(parents=True, exist_ok=True) deployment_runner = DeploymentRunner(experiment_name=experiment_name, se=None, log_root=f"{root}/{experiment_name}") deployment_runner.add_control_agent(hardware_agent, "hardware_closed_loop") deployment_runner.add_policy(policy) deployment_runner.add_command_profile(command_profile) if len(sys.argv) >= 2: max_steps = int(sys.argv[1]) else: max_steps = 10000000 print(f'max steps {max_steps}') deployment_runner.run(max_steps=max_steps, logging=True) def load_policy(logdir): # try ------------------ # body = torch.jit.load(logdir + '/checkpoints/body_latest.jit').to('cpu') body = torch.jit.load(logdir + '/checkpoints/body_latest.jit') import os adaptation_module = torch.jit.load(logdir + '/checkpoints/adaptation_module_latest.jit').to('cpu') def policy(obs, info): i = 0 latent = adaptation_module.forward(obs["obs_history"].to('cpu')) action = body.forward(torch.cat((obs["obs_history"].to('cpu'), latent), dim=-1)) info['latent'] = latent return action return policy if __name__ == '__main__': # label = "gait-conditioned-agility/pretrain-v0/train" label = "gait-conditioned-agility/pretrain-go2/train" experiment_name = "example_experiment" # default: # max_vel=3.5, max_yaw_vel=5.0 load_and_run_policy(label, experiment_name=experiment_name, max_vel=2.5, max_yaw_vel=5.0)