# License: see [LICENSE, LICENSES/legged_gym/LICENSE] import os from typing import Dict from isaacgym import gymtorch, gymapi, gymutil from isaacgym.torch_utils import * assert gymtorch import torch from go1_gym import MINI_GYM_ROOT_DIR from go1_gym.envs.base.base_task import BaseTask from go1_gym.utils.math_utils import quat_apply_yaw, wrap_to_pi, get_scale_shift from go1_gym.utils.terrain import Terrain from .legged_robot_config import Cfg class LeggedRobot(BaseTask): def __init__(self, cfg: Cfg, sim_params, physics_engine, sim_device, headless, eval_cfg=None, initial_dynamics_dict=None): """ Parses the provided config file, calls create_sim() (which creates, simulation, terrain and environments), initilizes pytorch buffers used during training Args: cfg (Dict): Environment config file sim_params (gymapi.SimParams): simulation parameters physics_engine (gymapi.SimType): gymapi.SIM_PHYSX (must be PhysX) device_type (string): 'cuda' or 'cpu' device_id (int): 0, 1, ... headless (bool): Run without rendering if True """ self.cfg = cfg self.eval_cfg = eval_cfg self.sim_params = sim_params self.height_samples = None self.debug_viz = False self.init_done = False self.initial_dynamics_dict = initial_dynamics_dict if eval_cfg is not None: self._parse_cfg(eval_cfg) self._parse_cfg(self.cfg) super().__init__(self.cfg, sim_params, physics_engine, sim_device, headless, self.eval_cfg) self._init_command_distribution(torch.arange(self.num_envs, device=self.device)) # self.rand_buffers_eval = self._init_custom_buffers__(self.num_eval_envs) if not self.headless: self.set_camera(self.cfg.viewer.pos, self.cfg.viewer.lookat) self._init_buffers() self._prepare_reward_function() self.init_done = True self.record_now = False self.record_eval_now = False self.collecting_evaluation = False self.num_still_evaluating = 0 def step(self, actions): """ Apply actions, simulate, call self.post_physics_step() Args: actions (torch.Tensor): Tensor of shape (num_envs, num_actions_per_env) """ clip_actions = self.cfg.normalization.clip_actions self.actions = torch.clip(actions, -clip_actions, clip_actions).to(self.device) # step physics and render each frame self.prev_base_pos = self.base_pos.clone() self.prev_base_quat = self.base_quat.clone() self.prev_base_lin_vel = self.base_lin_vel.clone() self.prev_foot_velocities = self.foot_velocities.clone() self.render_gui() for _ in range(self.cfg.control.decimation): self.torques = self._compute_torques(self.actions).view(self.torques.shape) self.gym.set_dof_actuation_force_tensor(self.sim, gymtorch.unwrap_tensor(self.torques)) self.gym.simulate(self.sim) # if self.device == 'cpu': self.gym.fetch_results(self.sim, True) self.gym.refresh_dof_state_tensor(self.sim) self.post_physics_step() # return clipped obs, clipped states (None), rewards, dones and infos clip_obs = self.cfg.normalization.clip_observations self.obs_buf = torch.clip(self.obs_buf, -clip_obs, clip_obs) if self.privileged_obs_buf is not None: self.privileged_obs_buf = torch.clip(self.privileged_obs_buf, -clip_obs, clip_obs) return self.obs_buf, self.privileged_obs_buf, self.rew_buf, self.reset_buf, self.extras def post_physics_step(self): """ check terminations, compute observations and rewards calls self._post_physics_step_callback() for common computations calls self._draw_debug_vis() if needed """ self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) if self.record_now: self.gym.step_graphics(self.sim) self.gym.render_all_camera_sensors(self.sim) self.episode_length_buf += 1 self.common_step_counter += 1 # prepare quantities self.base_pos[:] = self.root_states[:self.num_envs, 0:3] self.base_quat[:] = self.root_states[:self.num_envs, 3:7] self.base_lin_vel[:] = quat_rotate_inverse(self.base_quat, self.root_states[:self.num_envs, 7:10]) self.base_ang_vel[:] = quat_rotate_inverse(self.base_quat, self.root_states[:self.num_envs, 10:13]) self.projected_gravity[:] = quat_rotate_inverse(self.base_quat, self.gravity_vec) self.foot_velocities = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13 )[:, self.feet_indices, 7:10] self.foot_positions = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13)[:, self.feet_indices, 0:3] self._post_physics_step_callback() # compute observations, rewards, resets, ... self.check_termination() self.compute_reward() env_ids = self.reset_buf.nonzero(as_tuple=False).flatten() self.reset_idx(env_ids) self.compute_observations() self.last_last_actions[:] = self.last_actions[:] self.last_actions[:] = self.actions[:] self.last_last_joint_pos_target[:] = self.last_joint_pos_target[:] self.last_joint_pos_target[:] = self.joint_pos_target[:] self.last_dof_vel[:] = self.dof_vel[:] self.last_root_vel[:] = self.root_states[:, 7:13] if self.viewer and self.enable_viewer_sync and self.debug_viz: self._draw_debug_vis() self._render_headless() def check_termination(self): """ Check if environments need to be reset """ self.reset_buf = torch.any(torch.norm(self.contact_forces[:, self.termination_contact_indices, :], dim=-1) > 1., dim=1) self.time_out_buf = self.episode_length_buf > self.cfg.env.max_episode_length # no terminal reward for time-outs self.reset_buf |= self.time_out_buf if self.cfg.rewards.use_terminal_body_height: self.body_height_buf = torch.mean(self.root_states[:, 2].unsqueeze(1) - self.measured_heights, dim=1) \ < self.cfg.rewards.terminal_body_height self.reset_buf = torch.logical_or(self.body_height_buf, self.reset_buf) def reset_idx(self, env_ids): """ Reset some environments. Calls self._reset_dofs(env_ids), self._reset_root_states(env_ids), and self._resample_commands(env_ids) and Logs episode info Resets some buffers Args: env_ids (list[int]): List of environment ids which must be reset """ if len(env_ids) == 0: return # reset robot states self._resample_commands(env_ids) self._call_train_eval(self._randomize_dof_props, env_ids) if self.cfg.domain_rand.randomize_rigids_after_start: self._call_train_eval(self._randomize_rigid_body_props, env_ids) self._call_train_eval(self.refresh_actor_rigid_shape_props, env_ids) self._call_train_eval(self._reset_dofs, env_ids) self._call_train_eval(self._reset_root_states, env_ids) # reset buffers self.last_actions[env_ids] = 0. self.last_last_actions[env_ids] = 0. self.last_dof_vel[env_ids] = 0. self.feet_air_time[env_ids] = 0. self.episode_length_buf[env_ids] = 0 self.reset_buf[env_ids] = 1 # fill extras train_env_ids = env_ids[env_ids < self.num_train_envs] if len(train_env_ids) > 0: self.extras["train/episode"] = {} for key in self.episode_sums.keys(): self.extras["train/episode"]['rew_' + key] = torch.mean( self.episode_sums[key][train_env_ids]) self.episode_sums[key][train_env_ids] = 0. eval_env_ids = env_ids[env_ids >= self.num_train_envs] if len(eval_env_ids) > 0: self.extras["eval/episode"] = {} for key in self.episode_sums.keys(): # save the evaluation rollout result if not already saved unset_eval_envs = eval_env_ids[self.episode_sums_eval[key][eval_env_ids] == -1] self.episode_sums_eval[key][unset_eval_envs] = self.episode_sums[key][unset_eval_envs] self.episode_sums[key][eval_env_ids] = 0. # log additional curriculum info if self.cfg.terrain.curriculum: self.extras["train/episode"]["terrain_level"] = torch.mean( self.terrain_levels[:self.num_train_envs].float()) if self.cfg.commands.command_curriculum: self.extras["env_bins"] = torch.Tensor(self.env_command_bins)[:self.num_train_envs] self.extras["train/episode"]["min_command_duration"] = torch.min(self.commands[:, 8]) self.extras["train/episode"]["max_command_duration"] = torch.max(self.commands[:, 8]) self.extras["train/episode"]["min_command_bound"] = torch.min(self.commands[:, 7]) self.extras["train/episode"]["max_command_bound"] = torch.max(self.commands[:, 7]) self.extras["train/episode"]["min_command_offset"] = torch.min(self.commands[:, 6]) self.extras["train/episode"]["max_command_offset"] = torch.max(self.commands[:, 6]) self.extras["train/episode"]["min_command_phase"] = torch.min(self.commands[:, 5]) self.extras["train/episode"]["max_command_phase"] = torch.max(self.commands[:, 5]) self.extras["train/episode"]["min_command_freq"] = torch.min(self.commands[:, 4]) self.extras["train/episode"]["max_command_freq"] = torch.max(self.commands[:, 4]) self.extras["train/episode"]["min_command_x_vel"] = torch.min(self.commands[:, 0]) self.extras["train/episode"]["max_command_x_vel"] = torch.max(self.commands[:, 0]) self.extras["train/episode"]["min_command_y_vel"] = torch.min(self.commands[:, 1]) self.extras["train/episode"]["max_command_y_vel"] = torch.max(self.commands[:, 1]) self.extras["train/episode"]["min_command_yaw_vel"] = torch.min(self.commands[:, 2]) self.extras["train/episode"]["max_command_yaw_vel"] = torch.max(self.commands[:, 2]) if self.cfg.commands.num_commands > 9: self.extras["train/episode"]["min_command_swing_height"] = torch.min(self.commands[:, 9]) self.extras["train/episode"]["max_command_swing_height"] = torch.max(self.commands[:, 9]) for curriculum, category in zip(self.curricula, self.category_names): self.extras["train/episode"][f"command_area_{category}"] = np.sum(curriculum.weights) / \ curriculum.weights.shape[0] self.extras["train/episode"]["min_action"] = torch.min(self.actions) self.extras["train/episode"]["max_action"] = torch.max(self.actions) self.extras["curriculum/distribution"] = {} for curriculum, category in zip(self.curricula, self.category_names): self.extras[f"curriculum/distribution"][f"weights_{category}"] = curriculum.weights self.extras[f"curriculum/distribution"][f"grid_{category}"] = curriculum.grid if self.cfg.env.send_timeouts: self.extras["time_outs"] = self.time_out_buf[:self.num_train_envs] self.gait_indices[env_ids] = 0 for i in range(len(self.lag_buffer)): self.lag_buffer[i][env_ids, :] = 0 def set_idx_pose(self, env_ids, dof_pos, base_state): if len(env_ids) == 0: return env_ids_int32 = env_ids.to(dtype=torch.int32).to(self.device) # joints if dof_pos is not None: self.dof_pos[env_ids] = dof_pos self.dof_vel[env_ids] = 0. self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) # base position self.root_states[env_ids] = base_state.to(self.device) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) def compute_reward(self): """ Compute rewards Calls each reward function which had a non-zero scale (processed in self._prepare_reward_function()) adds each terms to the episode sums and to the total reward """ self.rew_buf[:] = 0. self.rew_buf_pos[:] = 0. self.rew_buf_neg[:] = 0. for i in range(len(self.reward_functions)): name = self.reward_names[i] rew = self.reward_functions[i]() * self.reward_scales[name] self.rew_buf += rew if torch.sum(rew) >= 0: self.rew_buf_pos += rew elif torch.sum(rew) <= 0: self.rew_buf_neg += rew self.episode_sums[name] += rew if name in ['tracking_contacts_shaped_force', 'tracking_contacts_shaped_vel']: self.command_sums[name] += self.reward_scales[name] + rew else: self.command_sums[name] += rew if self.cfg.rewards.only_positive_rewards: self.rew_buf[:] = torch.clip(self.rew_buf[:], min=0.) elif self.cfg.rewards.only_positive_rewards_ji22_style: #TODO: update self.rew_buf[:] = self.rew_buf_pos[:] * torch.exp(self.rew_buf_neg[:] / self.cfg.rewards.sigma_rew_neg) self.episode_sums["total"] += self.rew_buf # add termination reward after clipping if "termination" in self.reward_scales: rew = self.reward_container._reward_termination() * self.reward_scales["termination"] self.rew_buf += rew self.episode_sums["termination"] += rew self.command_sums["termination"] += rew self.command_sums["lin_vel_raw"] += self.base_lin_vel[:, 0] self.command_sums["ang_vel_raw"] += self.base_ang_vel[:, 2] self.command_sums["lin_vel_residual"] += (self.base_lin_vel[:, 0] - self.commands[:, 0]) ** 2 self.command_sums["ang_vel_residual"] += (self.base_ang_vel[:, 2] - self.commands[:, 2]) ** 2 self.command_sums["ep_timesteps"] += 1 def compute_observations(self): """ Computes observations """ self.obs_buf = torch.cat((self.projected_gravity, (self.dof_pos[:, :self.num_actuated_dof] - self.default_dof_pos[:, :self.num_actuated_dof]) * self.obs_scales.dof_pos, self.dof_vel[:, :self.num_actuated_dof] * self.obs_scales.dof_vel, self.actions ), dim=-1) # if self.cfg.env.observe_command and not self.cfg.env.observe_height_command: # self.obs_buf = torch.cat((self.projected_gravity, # self.commands[:, :3] * self.commands_scale, # (self.dof_pos - self.default_dof_pos) * self.obs_scales.dof_pos, # self.dof_vel * self.obs_scales.dof_vel, # self.actions # ), dim=-1) if self.cfg.env.observe_command: self.obs_buf = torch.cat((self.projected_gravity, self.commands * self.commands_scale, (self.dof_pos[:, :self.num_actuated_dof] - self.default_dof_pos[:, :self.num_actuated_dof]) * self.obs_scales.dof_pos, self.dof_vel[:, :self.num_actuated_dof] * self.obs_scales.dof_vel, self.actions ), dim=-1) if self.cfg.env.observe_two_prev_actions: self.obs_buf = torch.cat((self.obs_buf, self.last_actions), dim=-1) if self.cfg.env.observe_timing_parameter: self.obs_buf = torch.cat((self.obs_buf, self.gait_indices.unsqueeze(1)), dim=-1) if self.cfg.env.observe_clock_inputs: self.obs_buf = torch.cat((self.obs_buf, self.clock_inputs), dim=-1) # if self.cfg.env.observe_desired_contact_states: # self.obs_buf = torch.cat((self.obs_buf, # self.desired_contact_states), dim=-1) if self.cfg.env.observe_vel: if self.cfg.commands.global_reference: self.obs_buf = torch.cat((self.root_states[:self.num_envs, 7:10] * self.obs_scales.lin_vel, self.base_ang_vel * self.obs_scales.ang_vel, self.obs_buf), dim=-1) else: self.obs_buf = torch.cat((self.base_lin_vel * self.obs_scales.lin_vel, self.base_ang_vel * self.obs_scales.ang_vel, self.obs_buf), dim=-1) if self.cfg.env.observe_only_ang_vel: self.obs_buf = torch.cat((self.base_ang_vel * self.obs_scales.ang_vel, self.obs_buf), dim=-1) if self.cfg.env.observe_only_lin_vel: self.obs_buf = torch.cat((self.base_lin_vel * self.obs_scales.lin_vel, self.obs_buf), dim=-1) if self.cfg.env.observe_yaw: forward = quat_apply(self.base_quat, self.forward_vec) heading = torch.atan2(forward[:, 1], forward[:, 0]).unsqueeze(1) # heading_error = torch.clip(0.5 * wrap_to_pi(heading), -1., 1.).unsqueeze(1) self.obs_buf = torch.cat((self.obs_buf, heading), dim=-1) if self.cfg.env.observe_contact_states: self.obs_buf = torch.cat((self.obs_buf, (self.contact_forces[:, self.feet_indices, 2] > 1.).view( self.num_envs, -1) * 1.0), dim=1) # add noise if needed if self.add_noise: self.obs_buf += (2 * torch.rand_like(self.obs_buf) - 1) * self.noise_scale_vec # build privileged obs self.privileged_obs_buf = torch.empty(self.num_envs, 0).to(self.device) self.next_privileged_obs_buf = torch.empty(self.num_envs, 0).to(self.device) if self.cfg.env.priv_observe_friction: friction_coeffs_scale, friction_coeffs_shift = get_scale_shift(self.cfg.normalization.friction_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, (self.friction_coeffs[:, 0].unsqueeze( 1) - friction_coeffs_shift) * friction_coeffs_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, (self.friction_coeffs[:, 0].unsqueeze( 1) - friction_coeffs_shift) * friction_coeffs_scale), dim=1) if self.cfg.env.priv_observe_ground_friction: self.ground_friction_coeffs = self._get_ground_frictions(range(self.num_envs)) ground_friction_coeffs_scale, ground_friction_coeffs_shift = get_scale_shift( self.cfg.normalization.ground_friction_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, (self.ground_friction_coeffs.unsqueeze( 1) - ground_friction_coeffs_shift) * ground_friction_coeffs_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, (self.ground_friction_coeffs.unsqueeze( 1) - friction_coeffs_shift) * friction_coeffs_scale), dim=1) if self.cfg.env.priv_observe_restitution: restitutions_scale, restitutions_shift = get_scale_shift(self.cfg.normalization.restitution_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, (self.restitutions[:, 0].unsqueeze( 1) - restitutions_shift) * restitutions_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, (self.restitutions[:, 0].unsqueeze( 1) - restitutions_shift) * restitutions_scale), dim=1) if self.cfg.env.priv_observe_base_mass: payloads_scale, payloads_shift = get_scale_shift(self.cfg.normalization.added_mass_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, (self.payloads.unsqueeze(1) - payloads_shift) * payloads_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, (self.payloads.unsqueeze(1) - payloads_shift) * payloads_scale), dim=1) if self.cfg.env.priv_observe_com_displacement: com_displacements_scale, com_displacements_shift = get_scale_shift( self.cfg.normalization.com_displacement_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, ( self.com_displacements - com_displacements_shift) * com_displacements_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, ( self.com_displacements - com_displacements_shift) * com_displacements_scale), dim=1) if self.cfg.env.priv_observe_motor_strength: motor_strengths_scale, motor_strengths_shift = get_scale_shift(self.cfg.normalization.motor_strength_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, ( self.motor_strengths - motor_strengths_shift) * motor_strengths_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, ( self.motor_strengths - motor_strengths_shift) * motor_strengths_scale), dim=1) if self.cfg.env.priv_observe_motor_offset: motor_offset_scale, motor_offset_shift = get_scale_shift(self.cfg.normalization.motor_offset_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, ( self.motor_offsets - motor_offset_shift) * motor_offset_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.privileged_obs_buf, ( self.motor_offsets - motor_offset_shift) * motor_offset_scale), dim=1) if self.cfg.env.priv_observe_body_height: body_height_scale, body_height_shift = get_scale_shift(self.cfg.normalization.body_height_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, ((self.root_states[:self.num_envs, 2]).view( self.num_envs, -1) - body_height_shift) * body_height_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, ((self.root_states[:self.num_envs, 2]).view( self.num_envs, -1) - body_height_shift) * body_height_scale), dim=1) if self.cfg.env.priv_observe_body_velocity: body_velocity_scale, body_velocity_shift = get_scale_shift(self.cfg.normalization.body_velocity_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, ((self.base_lin_vel).view(self.num_envs, -1) - body_velocity_shift) * body_velocity_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, ((self.base_lin_vel).view(self.num_envs, -1) - body_velocity_shift) * body_velocity_scale), dim=1) if self.cfg.env.priv_observe_gravity: gravity_scale, gravity_shift = get_scale_shift(self.cfg.normalization.gravity_range) self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, (self.gravities - gravity_shift) / gravity_scale), dim=1) self.next_privileged_obs_buf = torch.cat((self.next_privileged_obs_buf, (self.gravities - gravity_shift) / gravity_scale), dim=1) if self.cfg.env.priv_observe_clock_inputs: self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, self.clock_inputs), dim=-1) if self.cfg.env.priv_observe_desired_contact_states: self.privileged_obs_buf = torch.cat((self.privileged_obs_buf, self.desired_contact_states), dim=-1) assert self.privileged_obs_buf.shape[ 1] == self.cfg.env.num_privileged_obs, f"num_privileged_obs ({self.cfg.env.num_privileged_obs}) != the number of privileged observations ({self.privileged_obs_buf.shape[1]}), you will discard data from the student!" def create_sim(self): """ Creates simulation, terrain and evironments """ self.up_axis_idx = 2 # 2 for z, 1 for y -> adapt gravity accordingly self.sim = self.gym.create_sim(self.sim_device_id, self.graphics_device_id, self.physics_engine, self.sim_params) mesh_type = self.cfg.terrain.mesh_type if mesh_type in ['heightfield', 'trimesh']: if self.eval_cfg is not None: self.terrain = Terrain(self.cfg.terrain, self.num_train_envs, self.eval_cfg.terrain, self.num_eval_envs) else: self.terrain = Terrain(self.cfg.terrain, self.num_train_envs) if mesh_type == 'plane': self._create_ground_plane() elif mesh_type == 'heightfield': self._create_heightfield() elif mesh_type == 'trimesh': self._create_trimesh() elif mesh_type is not None: raise ValueError("Terrain mesh type not recognised. Allowed types are [None, plane, heightfield, trimesh]") self._create_envs() def set_camera(self, position, lookat): """ Set camera position and direction """ cam_pos = gymapi.Vec3(position[0], position[1], position[2]) cam_target = gymapi.Vec3(lookat[0], lookat[1], lookat[2]) self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target) \ def set_main_agent_pose(self, loc, quat): self.root_states[0, 0:3] = torch.Tensor(loc) self.root_states[0, 3:7] = torch.Tensor(quat) self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states)) # ------------- Callbacks -------------- def _call_train_eval(self, func, env_ids): env_ids_train = env_ids[env_ids < self.num_train_envs] env_ids_eval = env_ids[env_ids >= self.num_train_envs] ret, ret_eval = None, None if len(env_ids_train) > 0: ret = func(env_ids_train, self.cfg) if len(env_ids_eval) > 0: ret_eval = func(env_ids_eval, self.eval_cfg) if ret is not None and ret_eval is not None: ret = torch.cat((ret, ret_eval), axis=-1) return ret def _randomize_gravity(self, external_force = None): if external_force is not None: self.gravities[:, :] = external_force.unsqueeze(0) elif self.cfg.domain_rand.randomize_gravity: min_gravity, max_gravity = self.cfg.domain_rand.gravity_range external_force = torch.rand(3, dtype=torch.float, device=self.device, requires_grad=False) * (max_gravity - min_gravity) + min_gravity self.gravities[:, :] = external_force.unsqueeze(0) sim_params = self.gym.get_sim_params(self.sim) gravity = self.gravities[0, :] + torch.Tensor([0, 0, -9.8]).to(self.device) self.gravity_vec[:, :] = gravity.unsqueeze(0) / torch.norm(gravity) sim_params.gravity = gymapi.Vec3(gravity[0], gravity[1], gravity[2]) self.gym.set_sim_params(self.sim, sim_params) def _process_rigid_shape_props(self, props, env_id): """ Callback allowing to store/change/randomize the rigid shape properties of each environment. Called During environment creation. Base behavior: randomizes the friction of each environment Args: props (List[gymapi.RigidShapeProperties]): Properties of each shape of the asset env_id (int): Environment id Returns: [List[gymapi.RigidShapeProperties]]: Modified rigid shape properties """ for s in range(len(props)): props[s].friction = self.friction_coeffs[env_id, 0] props[s].restitution = self.restitutions[env_id, 0] return props def _process_dof_props(self, props, env_id): """ Callback allowing to store/change/randomize the DOF properties of each environment. Called During environment creation. Base behavior: stores position, velocity and torques limits defined in the URDF Args: props (numpy.array): Properties of each DOF of the asset env_id (int): Environment id Returns: [numpy.array]: Modified DOF properties """ if env_id == 0: self.dof_pos_limits = torch.zeros(self.num_dof, 2, dtype=torch.float, device=self.device, requires_grad=False) self.dof_vel_limits = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.torque_limits = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) for i in range(len(props)): self.dof_pos_limits[i, 0] = props["lower"][i].item() self.dof_pos_limits[i, 1] = props["upper"][i].item() self.dof_vel_limits[i] = props["velocity"][i].item() self.torque_limits[i] = props["effort"][i].item() # soft limits m = (self.dof_pos_limits[i, 0] + self.dof_pos_limits[i, 1]) / 2 r = self.dof_pos_limits[i, 1] - self.dof_pos_limits[i, 0] self.dof_pos_limits[i, 0] = m - 0.5 * r * self.cfg.rewards.soft_dof_pos_limit self.dof_pos_limits[i, 1] = m + 0.5 * r * self.cfg.rewards.soft_dof_pos_limit return props def _randomize_rigid_body_props(self, env_ids, cfg): if cfg.domain_rand.randomize_base_mass: min_payload, max_payload = cfg.domain_rand.added_mass_range # self.payloads[env_ids] = -1.0 self.payloads[env_ids] = torch.rand(len(env_ids), dtype=torch.float, device=self.device, requires_grad=False) * (max_payload - min_payload) + min_payload if cfg.domain_rand.randomize_com_displacement: min_com_displacement, max_com_displacement = cfg.domain_rand.com_displacement_range self.com_displacements[env_ids, :] = torch.rand(len(env_ids), 3, dtype=torch.float, device=self.device, requires_grad=False) * ( max_com_displacement - min_com_displacement) + min_com_displacement if cfg.domain_rand.randomize_friction: min_friction, max_friction = cfg.domain_rand.friction_range self.friction_coeffs[env_ids, :] = torch.rand(len(env_ids), 1, dtype=torch.float, device=self.device, requires_grad=False) * ( max_friction - min_friction) + min_friction if cfg.domain_rand.randomize_restitution: min_restitution, max_restitution = cfg.domain_rand.restitution_range self.restitutions[env_ids] = torch.rand(len(env_ids), 1, dtype=torch.float, device=self.device, requires_grad=False) * ( max_restitution - min_restitution) + min_restitution def refresh_actor_rigid_shape_props(self, env_ids, cfg): for env_id in env_ids: rigid_shape_props = self.gym.get_actor_rigid_shape_properties(self.envs[env_id], 0) for i in range(self.num_dof): rigid_shape_props[i].friction = self.friction_coeffs[env_id, 0] rigid_shape_props[i].restitution = self.restitutions[env_id, 0] self.gym.set_actor_rigid_shape_properties(self.envs[env_id], 0, rigid_shape_props) def _randomize_dof_props(self, env_ids, cfg): if cfg.domain_rand.randomize_motor_strength: min_strength, max_strength = cfg.domain_rand.motor_strength_range self.motor_strengths[env_ids, :] = torch.rand(len(env_ids), dtype=torch.float, device=self.device, requires_grad=False).unsqueeze(1) * ( max_strength - min_strength) + min_strength if cfg.domain_rand.randomize_motor_offset: min_offset, max_offset = cfg.domain_rand.motor_offset_range self.motor_offsets[env_ids, :] = torch.rand(len(env_ids), self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) * ( max_offset - min_offset) + min_offset if cfg.domain_rand.randomize_Kp_factor: min_Kp_factor, max_Kp_factor = cfg.domain_rand.Kp_factor_range self.Kp_factors[env_ids, :] = torch.rand(len(env_ids), dtype=torch.float, device=self.device, requires_grad=False).unsqueeze(1) * ( max_Kp_factor - min_Kp_factor) + min_Kp_factor if cfg.domain_rand.randomize_Kd_factor: min_Kd_factor, max_Kd_factor = cfg.domain_rand.Kd_factor_range self.Kd_factors[env_ids, :] = torch.rand(len(env_ids), dtype=torch.float, device=self.device, requires_grad=False).unsqueeze(1) * ( max_Kd_factor - min_Kd_factor) + min_Kd_factor def _process_rigid_body_props(self, props, env_id): self.default_body_mass = props[0].mass props[0].mass = self.default_body_mass + self.payloads[env_id] props[0].com = gymapi.Vec3(self.com_displacements[env_id, 0], self.com_displacements[env_id, 1], self.com_displacements[env_id, 2]) return props def _post_physics_step_callback(self): """ Callback called before computing terminations, rewards, and observations Default behaviour: Compute ang vel command based on target and heading, compute measured terrain heights and randomly push robots """ # teleport robots to prevent falling off the edge self._call_train_eval(self._teleport_robots, torch.arange(self.num_envs, device=self.device)) # resample commands sample_interval = int(self.cfg.commands.resampling_time / self.dt) env_ids = (self.episode_length_buf % sample_interval == 0).nonzero(as_tuple=False).flatten() self._resample_commands(env_ids) self._step_contact_targets() # measure terrain heights if self.cfg.terrain.measure_heights: self.measured_heights = self._get_heights(torch.arange(self.num_envs, device=self.device), self.cfg) # push robots self._call_train_eval(self._push_robots, torch.arange(self.num_envs, device=self.device)) # randomize dof properties env_ids = (self.episode_length_buf % int(self.cfg.domain_rand.rand_interval) == 0).nonzero( as_tuple=False).flatten() self._call_train_eval(self._randomize_dof_props, env_ids) if self.common_step_counter % int(self.cfg.domain_rand.gravity_rand_interval) == 0: self._randomize_gravity() if int(self.common_step_counter - self.cfg.domain_rand.gravity_rand_duration) % int( self.cfg.domain_rand.gravity_rand_interval) == 0: self._randomize_gravity(torch.tensor([0, 0, 0])) if self.cfg.domain_rand.randomize_rigids_after_start: self._call_train_eval(self._randomize_rigid_body_props, env_ids) self._call_train_eval(self.refresh_actor_rigid_shape_props, env_ids) def _resample_commands(self, env_ids): if len(env_ids) == 0: return timesteps = int(self.cfg.commands.resampling_time / self.dt) ep_len = min(self.cfg.env.max_episode_length, timesteps) # update curricula based on terminated environment bins and categories for i, (category, curriculum) in enumerate(zip(self.category_names, self.curricula)): env_ids_in_category = self.env_command_categories[env_ids.cpu()] == i if isinstance(env_ids_in_category, np.bool_) or len(env_ids_in_category) == 1: env_ids_in_category = torch.tensor([env_ids_in_category], dtype=torch.bool) elif len(env_ids_in_category) == 0: continue env_ids_in_category = env_ids[env_ids_in_category] task_rewards, success_thresholds = [], [] for key in ["tracking_lin_vel", "tracking_ang_vel", "tracking_contacts_shaped_force", "tracking_contacts_shaped_vel"]: if key in self.command_sums.keys(): task_rewards.append(self.command_sums[key][env_ids_in_category] / ep_len) success_thresholds.append(self.curriculum_thresholds[key] * self.reward_scales[key]) old_bins = self.env_command_bins[env_ids_in_category.cpu().numpy()] if len(success_thresholds) > 0: curriculum.update(old_bins, task_rewards, success_thresholds, local_range=np.array( [0.55, 0.55, 0.55, 0.55, 0.35, 0.25, 0.25, 0.25, 0.25, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])) # assign resampled environments to new categories random_env_floats = torch.rand(len(env_ids), device=self.device) probability_per_category = 1. / len(self.category_names) category_env_ids = [env_ids[torch.logical_and(probability_per_category * i <= random_env_floats, random_env_floats < probability_per_category * (i + 1))] for i in range(len(self.category_names))] # sample from new category curricula for i, (category, env_ids_in_category, curriculum) in enumerate( zip(self.category_names, category_env_ids, self.curricula)): batch_size = len(env_ids_in_category) if batch_size == 0: continue new_commands, new_bin_inds = curriculum.sample(batch_size=batch_size) self.env_command_bins[env_ids_in_category.cpu().numpy()] = new_bin_inds self.env_command_categories[env_ids_in_category.cpu().numpy()] = i self.commands[env_ids_in_category, :] = torch.Tensor(new_commands[:, :self.cfg.commands.num_commands]).to( self.device) if self.cfg.commands.num_commands > 5: if self.cfg.commands.gaitwise_curricula: for i, (category, env_ids_in_category) in enumerate(zip(self.category_names, category_env_ids)): if category == "pronk": # pronking self.commands[env_ids_in_category, 5] = (self.commands[env_ids_in_category, 5] / 2 - 0.25) % 1 self.commands[env_ids_in_category, 6] = (self.commands[env_ids_in_category, 6] / 2 - 0.25) % 1 self.commands[env_ids_in_category, 7] = (self.commands[env_ids_in_category, 7] / 2 - 0.25) % 1 elif category == "trot": # trotting self.commands[env_ids_in_category, 5] = self.commands[env_ids_in_category, 5] / 2 + 0.25 self.commands[env_ids_in_category, 6] = 0 self.commands[env_ids_in_category, 7] = 0 elif category == "pace": # pacing self.commands[env_ids_in_category, 5] = 0 self.commands[env_ids_in_category, 6] = self.commands[env_ids_in_category, 6] / 2 + 0.25 self.commands[env_ids_in_category, 7] = 0 elif category == "bound": # bounding self.commands[env_ids_in_category, 5] = 0 self.commands[env_ids_in_category, 6] = 0 self.commands[env_ids_in_category, 7] = self.commands[env_ids_in_category, 7] / 2 + 0.25 elif self.cfg.commands.exclusive_phase_offset: random_env_floats = torch.rand(len(env_ids), device=self.device) trotting_envs = env_ids[random_env_floats < 0.34] pacing_envs = env_ids[torch.logical_and(0.34 <= random_env_floats, random_env_floats < 0.67)] bounding_envs = env_ids[0.67 <= random_env_floats] self.commands[pacing_envs, 5] = 0 self.commands[bounding_envs, 5] = 0 self.commands[trotting_envs, 6] = 0 self.commands[bounding_envs, 6] = 0 self.commands[trotting_envs, 7] = 0 self.commands[pacing_envs, 7] = 0 elif self.cfg.commands.balance_gait_distribution: random_env_floats = torch.rand(len(env_ids), device=self.device) pronking_envs = env_ids[random_env_floats <= 0.25] trotting_envs = env_ids[torch.logical_and(0.25 <= random_env_floats, random_env_floats < 0.50)] pacing_envs = env_ids[torch.logical_and(0.50 <= random_env_floats, random_env_floats < 0.75)] bounding_envs = env_ids[0.75 <= random_env_floats] self.commands[pronking_envs, 5] = (self.commands[pronking_envs, 5] / 2 - 0.25) % 1 self.commands[pronking_envs, 6] = (self.commands[pronking_envs, 6] / 2 - 0.25) % 1 self.commands[pronking_envs, 7] = (self.commands[pronking_envs, 7] / 2 - 0.25) % 1 self.commands[trotting_envs, 6] = 0 self.commands[trotting_envs, 7] = 0 self.commands[pacing_envs, 5] = 0 self.commands[pacing_envs, 7] = 0 self.commands[bounding_envs, 5] = 0 self.commands[bounding_envs, 6] = 0 self.commands[trotting_envs, 5] = self.commands[trotting_envs, 5] / 2 + 0.25 self.commands[pacing_envs, 6] = self.commands[pacing_envs, 6] / 2 + 0.25 self.commands[bounding_envs, 7] = self.commands[bounding_envs, 7] / 2 + 0.25 if self.cfg.commands.binary_phases: self.commands[env_ids, 5] = (torch.round(2 * self.commands[env_ids, 5])) / 2.0 % 1 self.commands[env_ids, 6] = (torch.round(2 * self.commands[env_ids, 6])) / 2.0 % 1 self.commands[env_ids, 7] = (torch.round(2 * self.commands[env_ids, 7])) / 2.0 % 1 # setting the smaller commands to zero self.commands[env_ids, :2] *= (torch.norm(self.commands[env_ids, :2], dim=1) > 0.2).unsqueeze(1) # reset command sums for key in self.command_sums.keys(): self.command_sums[key][env_ids] = 0. def _step_contact_targets(self): if self.cfg.env.observe_gait_commands: frequencies = self.commands[:, 4] phases = self.commands[:, 5] offsets = self.commands[:, 6] bounds = self.commands[:, 7] durations = self.commands[:, 8] self.gait_indices = torch.remainder(self.gait_indices + self.dt * frequencies, 1.0) if self.cfg.commands.pacing_offset: foot_indices = [self.gait_indices + phases + offsets + bounds, self.gait_indices + bounds, self.gait_indices + offsets, self.gait_indices + phases] else: foot_indices = [self.gait_indices + phases + offsets + bounds, self.gait_indices + offsets, self.gait_indices + bounds, self.gait_indices + phases] self.foot_indices = torch.remainder(torch.cat([foot_indices[i].unsqueeze(1) for i in range(4)], dim=1), 1.0) for idxs in foot_indices: stance_idxs = torch.remainder(idxs, 1) < durations swing_idxs = torch.remainder(idxs, 1) > durations idxs[stance_idxs] = torch.remainder(idxs[stance_idxs], 1) * (0.5 / durations[stance_idxs]) idxs[swing_idxs] = 0.5 + (torch.remainder(idxs[swing_idxs], 1) - durations[swing_idxs]) * ( 0.5 / (1 - durations[swing_idxs])) # if self.cfg.commands.durations_warp_clock_inputs: self.clock_inputs[:, 0] = torch.sin(2 * np.pi * foot_indices[0]) self.clock_inputs[:, 1] = torch.sin(2 * np.pi * foot_indices[1]) self.clock_inputs[:, 2] = torch.sin(2 * np.pi * foot_indices[2]) self.clock_inputs[:, 3] = torch.sin(2 * np.pi * foot_indices[3]) self.doubletime_clock_inputs[:, 0] = torch.sin(4 * np.pi * foot_indices[0]) self.doubletime_clock_inputs[:, 1] = torch.sin(4 * np.pi * foot_indices[1]) self.doubletime_clock_inputs[:, 2] = torch.sin(4 * np.pi * foot_indices[2]) self.doubletime_clock_inputs[:, 3] = torch.sin(4 * np.pi * foot_indices[3]) self.halftime_clock_inputs[:, 0] = torch.sin(np.pi * foot_indices[0]) self.halftime_clock_inputs[:, 1] = torch.sin(np.pi * foot_indices[1]) self.halftime_clock_inputs[:, 2] = torch.sin(np.pi * foot_indices[2]) self.halftime_clock_inputs[:, 3] = torch.sin(np.pi * foot_indices[3]) # von mises distribution kappa = self.cfg.rewards.kappa_gait_probs smoothing_cdf_start = torch.distributions.normal.Normal(0, kappa).cdf # (x) + torch.distributions.normal.Normal(1, kappa).cdf(x)) / 2 smoothing_multiplier_FL = (smoothing_cdf_start(torch.remainder(foot_indices[0], 1.0)) * ( 1 - smoothing_cdf_start(torch.remainder(foot_indices[0], 1.0) - 0.5)) + smoothing_cdf_start(torch.remainder(foot_indices[0], 1.0) - 1) * ( 1 - smoothing_cdf_start( torch.remainder(foot_indices[0], 1.0) - 0.5 - 1))) smoothing_multiplier_FR = (smoothing_cdf_start(torch.remainder(foot_indices[1], 1.0)) * ( 1 - smoothing_cdf_start(torch.remainder(foot_indices[1], 1.0) - 0.5)) + smoothing_cdf_start(torch.remainder(foot_indices[1], 1.0) - 1) * ( 1 - smoothing_cdf_start( torch.remainder(foot_indices[1], 1.0) - 0.5 - 1))) smoothing_multiplier_RL = (smoothing_cdf_start(torch.remainder(foot_indices[2], 1.0)) * ( 1 - smoothing_cdf_start(torch.remainder(foot_indices[2], 1.0) - 0.5)) + smoothing_cdf_start(torch.remainder(foot_indices[2], 1.0) - 1) * ( 1 - smoothing_cdf_start( torch.remainder(foot_indices[2], 1.0) - 0.5 - 1))) smoothing_multiplier_RR = (smoothing_cdf_start(torch.remainder(foot_indices[3], 1.0)) * ( 1 - smoothing_cdf_start(torch.remainder(foot_indices[3], 1.0) - 0.5)) + smoothing_cdf_start(torch.remainder(foot_indices[3], 1.0) - 1) * ( 1 - smoothing_cdf_start( torch.remainder(foot_indices[3], 1.0) - 0.5 - 1))) self.desired_contact_states[:, 0] = smoothing_multiplier_FL self.desired_contact_states[:, 1] = smoothing_multiplier_FR self.desired_contact_states[:, 2] = smoothing_multiplier_RL self.desired_contact_states[:, 3] = smoothing_multiplier_RR if self.cfg.commands.num_commands > 9: self.desired_footswing_height = self.commands[:, 9] def _compute_torques(self, actions): """ Compute torques from actions. Actions can be interpreted as position or velocity targets given to a PD controller, or directly as scaled torques. [NOTE]: torques must have the same dimension as the number of DOFs, even if some DOFs are not actuated. Args: actions (torch.Tensor): Actions Returns: [torch.Tensor]: Torques sent to the simulation """ # pd controller actions_scaled = actions[:, :12] * self.cfg.control.action_scale actions_scaled[:, [0, 3, 6, 9]] *= self.cfg.control.hip_scale_reduction # scale down hip flexion range if self.cfg.domain_rand.randomize_lag_timesteps: self.lag_buffer = self.lag_buffer[1:] + [actions_scaled.clone()] self.joint_pos_target = self.lag_buffer[0] + self.default_dof_pos else: self.joint_pos_target = actions_scaled + self.default_dof_pos control_type = self.cfg.control.control_type if control_type == "actuator_net": self.joint_pos_err = self.dof_pos - self.joint_pos_target + self.motor_offsets self.joint_vel = self.dof_vel torques = self.actuator_network(self.joint_pos_err, self.joint_pos_err_last, self.joint_pos_err_last_last, self.joint_vel, self.joint_vel_last, self.joint_vel_last_last) self.joint_pos_err_last_last = torch.clone(self.joint_pos_err_last) self.joint_pos_err_last = torch.clone(self.joint_pos_err) self.joint_vel_last_last = torch.clone(self.joint_vel_last) self.joint_vel_last = torch.clone(self.joint_vel) elif control_type == "P": torques = self.p_gains * self.Kp_factors * ( self.joint_pos_target - self.dof_pos + self.motor_offsets) - self.d_gains * self.Kd_factors * self.dof_vel else: raise NameError(f"Unknown controller type: {control_type}") torques = torques * self.motor_strengths return torch.clip(torques, -self.torque_limits, self.torque_limits) def _reset_dofs(self, env_ids, cfg): """ Resets DOF position and velocities of selected environmments Positions are randomly selected within 0.5:1.5 x default positions. Velocities are set to zero. Args: env_ids (List[int]): Environemnt ids """ self.dof_pos[env_ids] = self.default_dof_pos * torch_rand_float(0.5, 1.5, (len(env_ids), self.num_dof), device=self.device) self.dof_vel[env_ids] = 0. env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.dof_state), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) def _reset_root_states(self, env_ids, cfg): """ Resets ROOT states position and velocities of selected environmments Sets base position based on the curriculum Selects randomized base velocities within -0.5:0.5 [m/s, rad/s] Args: env_ids (List[int]): Environemnt ids """ # base position if self.custom_origins: self.root_states[env_ids] = self.base_init_state self.root_states[env_ids, :3] += self.env_origins[env_ids] self.root_states[env_ids, 0:1] += torch_rand_float(-cfg.terrain.x_init_range, cfg.terrain.x_init_range, (len(env_ids), 1), device=self.device) self.root_states[env_ids, 1:2] += torch_rand_float(-cfg.terrain.y_init_range, cfg.terrain.y_init_range, (len(env_ids), 1), device=self.device) self.root_states[env_ids, 0] += cfg.terrain.x_init_offset self.root_states[env_ids, 1] += cfg.terrain.y_init_offset else: self.root_states[env_ids] = self.base_init_state self.root_states[env_ids, :3] += self.env_origins[env_ids] # base yaws init_yaws = torch_rand_float(-cfg.terrain.yaw_init_range, cfg.terrain.yaw_init_range, (len(env_ids), 1), device=self.device) quat = quat_from_angle_axis(init_yaws, torch.Tensor([0, 0, 1]).to(self.device))[:, 0, :] self.root_states[env_ids, 3:7] = quat # base velocities self.root_states[env_ids, 7:13] = torch_rand_float(-0.5, 0.5, (len(env_ids), 6), device=self.device) # [7:10]: lin vel, [10:13]: ang vel env_ids_int32 = env_ids.to(dtype=torch.int32) self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self.root_states), gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32)) if cfg.env.record_video and 0 in env_ids: if self.complete_video_frames is None: self.complete_video_frames = [] else: self.complete_video_frames = self.video_frames[:] self.video_frames = [] if cfg.env.record_video and self.eval_cfg is not None and self.num_train_envs in env_ids: if self.complete_video_frames_eval is None: self.complete_video_frames_eval = [] else: self.complete_video_frames_eval = self.video_frames_eval[:] self.video_frames_eval = [] def _push_robots(self, env_ids, cfg): """ Random pushes the robots. Emulates an impulse by setting a randomized base velocity. """ if cfg.domain_rand.push_robots: env_ids = env_ids[self.episode_length_buf[env_ids] % int(cfg.domain_rand.push_interval) == 0] max_vel = cfg.domain_rand.max_push_vel_xy self.root_states[env_ids, 7:9] = torch_rand_float(-max_vel, max_vel, (len(env_ids), 2), device=self.device) # lin vel x/y self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states)) def _teleport_robots(self, env_ids, cfg): """ Teleports any robots that are too close to the edge to the other side """ if cfg.terrain.teleport_robots: thresh = cfg.terrain.teleport_thresh x_offset = int(cfg.terrain.x_offset * cfg.terrain.horizontal_scale) low_x_ids = env_ids[self.root_states[env_ids, 0] < thresh + x_offset] self.root_states[low_x_ids, 0] += cfg.terrain.terrain_length * (cfg.terrain.num_rows - 1) high_x_ids = env_ids[ self.root_states[env_ids, 0] > cfg.terrain.terrain_length * cfg.terrain.num_rows - thresh + x_offset] self.root_states[high_x_ids, 0] -= cfg.terrain.terrain_length * (cfg.terrain.num_rows - 1) low_y_ids = env_ids[self.root_states[env_ids, 1] < thresh] self.root_states[low_y_ids, 1] += cfg.terrain.terrain_width * (cfg.terrain.num_cols - 1) high_y_ids = env_ids[ self.root_states[env_ids, 1] > cfg.terrain.terrain_width * cfg.terrain.num_cols - thresh] self.root_states[high_y_ids, 1] -= cfg.terrain.terrain_width * (cfg.terrain.num_cols - 1) self.gym.set_actor_root_state_tensor(self.sim, gymtorch.unwrap_tensor(self.root_states)) self.gym.refresh_actor_root_state_tensor(self.sim) def _get_noise_scale_vec(self, cfg): """ Sets a vector used to scale the noise added to the observations. [NOTE]: Must be adapted when changing the observations structure Args: cfg (Dict): Environment config file Returns: [torch.Tensor]: Vector of scales used to multiply a uniform distribution in [-1, 1] """ # noise_vec = torch.zeros_like(self.obs_buf[0]) self.add_noise = self.cfg.noise.add_noise noise_scales = self.cfg.noise_scales noise_level = self.cfg.noise.noise_level noise_vec = torch.cat((torch.ones(3) * noise_scales.gravity * noise_level, torch.ones( self.num_actuated_dof) * noise_scales.dof_pos * noise_level * self.obs_scales.dof_pos, torch.ones( self.num_actuated_dof) * noise_scales.dof_vel * noise_level * self.obs_scales.dof_vel, torch.zeros(self.num_actions), ), dim=0) if self.cfg.env.observe_command: noise_vec = torch.cat((torch.ones(3) * noise_scales.gravity * noise_level, torch.zeros(self.cfg.commands.num_commands), torch.ones( self.num_actuated_dof) * noise_scales.dof_pos * noise_level * self.obs_scales.dof_pos, torch.ones( self.num_actuated_dof) * noise_scales.dof_vel * noise_level * self.obs_scales.dof_vel, torch.zeros(self.num_actions), ), dim=0) if self.cfg.env.observe_two_prev_actions: noise_vec = torch.cat((noise_vec, torch.zeros(self.num_actions) ), dim=0) if self.cfg.env.observe_timing_parameter: noise_vec = torch.cat((noise_vec, torch.zeros(1) ), dim=0) if self.cfg.env.observe_clock_inputs: noise_vec = torch.cat((noise_vec, torch.zeros(4) ), dim=0) if self.cfg.env.observe_vel: noise_vec = torch.cat((torch.ones(3) * noise_scales.lin_vel * noise_level * self.obs_scales.lin_vel, torch.ones(3) * noise_scales.ang_vel * noise_level * self.obs_scales.ang_vel, noise_vec ), dim=0) if self.cfg.env.observe_only_lin_vel: noise_vec = torch.cat((torch.ones(3) * noise_scales.lin_vel * noise_level * self.obs_scales.lin_vel, noise_vec ), dim=0) if self.cfg.env.observe_yaw: noise_vec = torch.cat((noise_vec, torch.zeros(1), ), dim=0) if self.cfg.env.observe_contact_states: noise_vec = torch.cat((noise_vec, torch.ones(4) * noise_scales.contact_states * noise_level, ), dim=0) noise_vec = noise_vec.to(self.device) return noise_vec # ---------------------------------------- def _init_buffers(self): """ Initialize torch tensors which will contain simulation states and processed quantities """ # get gym GPU state tensors actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim) dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim) net_contact_forces = self.gym.acquire_net_contact_force_tensor(self.sim) rigid_body_state = self.gym.acquire_rigid_body_state_tensor(self.sim) self.gym.refresh_dof_state_tensor(self.sim) self.gym.refresh_actor_root_state_tensor(self.sim) self.gym.refresh_net_contact_force_tensor(self.sim) self.gym.refresh_rigid_body_state_tensor(self.sim) self.gym.render_all_camera_sensors(self.sim) # create some wrapper tensors for different slices self.root_states = gymtorch.wrap_tensor(actor_root_state) self.dof_state = gymtorch.wrap_tensor(dof_state_tensor) self.net_contact_forces = gymtorch.wrap_tensor(net_contact_forces)[:self.num_envs * self.num_bodies, :] self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0] self.base_pos = self.root_states[:self.num_envs, 0:3] self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1] self.base_quat = self.root_states[:self.num_envs, 3:7] self.rigid_body_state = gymtorch.wrap_tensor(rigid_body_state)[:self.num_envs * self.num_bodies, :] self.foot_velocities = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13)[:, self.feet_indices, 7:10] self.foot_positions = self.rigid_body_state.view(self.num_envs, self.num_bodies, 13)[:, self.feet_indices, 0:3] self.prev_base_pos = self.base_pos.clone() self.prev_foot_velocities = self.foot_velocities.clone() self.lag_buffer = [torch.zeros_like(self.dof_pos) for i in range(self.cfg.domain_rand.lag_timesteps+1)] self.contact_forces = gymtorch.wrap_tensor(net_contact_forces)[:self.num_envs * self.num_bodies, :].view(self.num_envs, -1, 3) # shape: num_envs, num_bodies, xyz axis # initialize some data used later on self.common_step_counter = 0 self.extras = {} if self.cfg.terrain.measure_heights: self.height_points = self._init_height_points(torch.arange(self.num_envs, device=self.device), self.cfg) self.measured_heights = 0 self.noise_scale_vec = self._get_noise_scale_vec(self.cfg) # , self.eval_cfg) self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat( (self.num_envs, 1)) self.forward_vec = to_torch([1., 0., 0.], device=self.device).repeat((self.num_envs, 1)) self.torques = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.p_gains = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.d_gains = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.last_last_actions = torch.zeros(self.num_envs, self.num_actions, dtype=torch.float, device=self.device, requires_grad=False) self.joint_pos_target = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.last_joint_pos_target = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.last_last_joint_pos_target = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.last_dof_vel = torch.zeros_like(self.dof_vel) self.last_root_vel = torch.zeros_like(self.root_states[:, 7:13]) self.commands_value = torch.zeros(self.num_envs, self.cfg.commands.num_commands, dtype=torch.float, device=self.device, requires_grad=False) self.commands = torch.zeros_like(self.commands_value) # x vel, y vel, yaw vel, heading self.commands_scale = torch.tensor([self.obs_scales.lin_vel, self.obs_scales.lin_vel, self.obs_scales.ang_vel, self.obs_scales.body_height_cmd, self.obs_scales.gait_freq_cmd, self.obs_scales.gait_phase_cmd, self.obs_scales.gait_phase_cmd, self.obs_scales.gait_phase_cmd, self.obs_scales.gait_phase_cmd, self.obs_scales.footswing_height_cmd, self.obs_scales.body_pitch_cmd, self.obs_scales.body_roll_cmd, self.obs_scales.stance_width_cmd, self.obs_scales.stance_length_cmd, self.obs_scales.aux_reward_cmd], device=self.device, requires_grad=False, )[:self.cfg.commands.num_commands] self.desired_contact_states = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False, ) self.feet_air_time = torch.zeros(self.num_envs, self.feet_indices.shape[0], dtype=torch.float, device=self.device, requires_grad=False) self.last_contacts = torch.zeros(self.num_envs, len(self.feet_indices), dtype=torch.bool, device=self.device, requires_grad=False) self.last_contact_filt = torch.zeros(self.num_envs, len(self.feet_indices), dtype=torch.bool, device=self.device, requires_grad=False) self.base_lin_vel = quat_rotate_inverse(self.base_quat, self.root_states[:self.num_envs, 7:10]) self.base_ang_vel = quat_rotate_inverse(self.base_quat, self.root_states[:self.num_envs, 10:13]) self.projected_gravity = quat_rotate_inverse(self.base_quat, self.gravity_vec) # joint positions offsets and PD gains self.default_dof_pos = torch.zeros(self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) for i in range(self.num_dofs): name = self.dof_names[i] angle = self.cfg.init_state.default_joint_angles[name] self.default_dof_pos[i] = angle found = False for dof_name in self.cfg.control.stiffness.keys(): if dof_name in name: self.p_gains[i] = self.cfg.control.stiffness[dof_name] self.d_gains[i] = self.cfg.control.damping[dof_name] found = True if not found: self.p_gains[i] = 0. self.d_gains[i] = 0. if self.cfg.control.control_type in ["P", "V"]: print(f"PD gain of joint {name} were not defined, setting them to zero") self.default_dof_pos = self.default_dof_pos.unsqueeze(0) if self.cfg.control.control_type == "actuator_net": actuator_path = f'{os.path.dirname(os.path.dirname(os.path.realpath(__file__)))}/../../resources/actuator_nets/unitree_go1.pt' actuator_network = torch.jit.load(actuator_path).to(self.device) def eval_actuator_network(joint_pos, joint_pos_last, joint_pos_last_last, joint_vel, joint_vel_last, joint_vel_last_last): xs = torch.cat((joint_pos.unsqueeze(-1), joint_pos_last.unsqueeze(-1), joint_pos_last_last.unsqueeze(-1), joint_vel.unsqueeze(-1), joint_vel_last.unsqueeze(-1), joint_vel_last_last.unsqueeze(-1)), dim=-1) torques = actuator_network(xs.view(self.num_envs * 12, 6)) return torques.view(self.num_envs, 12) self.actuator_network = eval_actuator_network self.joint_pos_err_last_last = torch.zeros((self.num_envs, 12), device=self.device) self.joint_pos_err_last = torch.zeros((self.num_envs, 12), device=self.device) self.joint_vel_last_last = torch.zeros((self.num_envs, 12), device=self.device) self.joint_vel_last = torch.zeros((self.num_envs, 12), device=self.device) def _init_custom_buffers__(self): # domain randomization properties self.friction_coeffs = self.default_friction * torch.ones(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.restitutions = self.default_restitution * torch.ones(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.payloads = torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.com_displacements = torch.zeros(self.num_envs, 3, dtype=torch.float, device=self.device, requires_grad=False) self.motor_strengths = torch.ones(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.motor_offsets = torch.zeros(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.Kp_factors = torch.ones(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.Kd_factors = torch.ones(self.num_envs, self.num_dof, dtype=torch.float, device=self.device, requires_grad=False) self.gravities = torch.zeros(self.num_envs, 3, dtype=torch.float, device=self.device, requires_grad=False) self.gravity_vec = to_torch(get_axis_params(-1., self.up_axis_idx), device=self.device).repeat( (self.num_envs, 1)) # if custom initialization values were passed in, set them here dynamics_params = ["friction_coeffs", "restitutions", "payloads", "com_displacements", "motor_strengths", "Kp_factors", "Kd_factors"] if self.initial_dynamics_dict is not None: for k, v in self.initial_dynamics_dict.items(): if k in dynamics_params: setattr(self, k, v.to(self.device)) self.gait_indices = torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.clock_inputs = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.doubletime_clock_inputs = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) self.halftime_clock_inputs = torch.zeros(self.num_envs, 4, dtype=torch.float, device=self.device, requires_grad=False) def _init_command_distribution(self, env_ids): # new style curriculum self.category_names = ['nominal'] if self.cfg.commands.gaitwise_curricula: self.category_names = ['pronk', 'trot', 'pace', 'bound'] if self.cfg.commands.curriculum_type == "RewardThresholdCurriculum": from .curriculum import RewardThresholdCurriculum CurriculumClass = RewardThresholdCurriculum self.curricula = [] for category in self.category_names: self.curricula += [CurriculumClass(seed=self.cfg.commands.curriculum_seed, x_vel=(self.cfg.commands.limit_vel_x[0], self.cfg.commands.limit_vel_x[1], self.cfg.commands.num_bins_vel_x), y_vel=(self.cfg.commands.limit_vel_y[0], self.cfg.commands.limit_vel_y[1], self.cfg.commands.num_bins_vel_y), yaw_vel=(self.cfg.commands.limit_vel_yaw[0], self.cfg.commands.limit_vel_yaw[1], self.cfg.commands.num_bins_vel_yaw), body_height=(self.cfg.commands.limit_body_height[0], self.cfg.commands.limit_body_height[1], self.cfg.commands.num_bins_body_height), gait_frequency=(self.cfg.commands.limit_gait_frequency[0], self.cfg.commands.limit_gait_frequency[1], self.cfg.commands.num_bins_gait_frequency), gait_phase=(self.cfg.commands.limit_gait_phase[0], self.cfg.commands.limit_gait_phase[1], self.cfg.commands.num_bins_gait_phase), gait_offset=(self.cfg.commands.limit_gait_offset[0], self.cfg.commands.limit_gait_offset[1], self.cfg.commands.num_bins_gait_offset), gait_bounds=(self.cfg.commands.limit_gait_bound[0], self.cfg.commands.limit_gait_bound[1], self.cfg.commands.num_bins_gait_bound), gait_duration=(self.cfg.commands.limit_gait_duration[0], self.cfg.commands.limit_gait_duration[1], self.cfg.commands.num_bins_gait_duration), footswing_height=(self.cfg.commands.limit_footswing_height[0], self.cfg.commands.limit_footswing_height[1], self.cfg.commands.num_bins_footswing_height), body_pitch=(self.cfg.commands.limit_body_pitch[0], self.cfg.commands.limit_body_pitch[1], self.cfg.commands.num_bins_body_pitch), body_roll=(self.cfg.commands.limit_body_roll[0], self.cfg.commands.limit_body_roll[1], self.cfg.commands.num_bins_body_roll), stance_width=(self.cfg.commands.limit_stance_width[0], self.cfg.commands.limit_stance_width[1], self.cfg.commands.num_bins_stance_width), stance_length=(self.cfg.commands.limit_stance_length[0], self.cfg.commands.limit_stance_length[1], self.cfg.commands.num_bins_stance_length), aux_reward_coef=(self.cfg.commands.limit_aux_reward_coef[0], self.cfg.commands.limit_aux_reward_coef[1], self.cfg.commands.num_bins_aux_reward_coef), )] if self.cfg.commands.curriculum_type == "LipschitzCurriculum": for curriculum in self.curricula: curriculum.set_params(lipschitz_threshold=self.cfg.commands.lipschitz_threshold, binary_phases=self.cfg.commands.binary_phases) self.env_command_bins = np.zeros(len(env_ids), dtype=np.int) self.env_command_categories = np.zeros(len(env_ids), dtype=np.int) low = np.array( [self.cfg.commands.lin_vel_x[0], self.cfg.commands.lin_vel_y[0], self.cfg.commands.ang_vel_yaw[0], self.cfg.commands.body_height_cmd[0], self.cfg.commands.gait_frequency_cmd_range[0], self.cfg.commands.gait_phase_cmd_range[0], self.cfg.commands.gait_offset_cmd_range[0], self.cfg.commands.gait_bound_cmd_range[0], self.cfg.commands.gait_duration_cmd_range[0], self.cfg.commands.footswing_height_range[0], self.cfg.commands.body_pitch_range[0], self.cfg.commands.body_roll_range[0],self.cfg.commands.stance_width_range[0], self.cfg.commands.stance_length_range[0], self.cfg.commands.aux_reward_coef_range[0], ]) high = np.array( [self.cfg.commands.lin_vel_x[1], self.cfg.commands.lin_vel_y[1], self.cfg.commands.ang_vel_yaw[1], self.cfg.commands.body_height_cmd[1], self.cfg.commands.gait_frequency_cmd_range[1], self.cfg.commands.gait_phase_cmd_range[1], self.cfg.commands.gait_offset_cmd_range[1], self.cfg.commands.gait_bound_cmd_range[1], self.cfg.commands.gait_duration_cmd_range[1], self.cfg.commands.footswing_height_range[1], self.cfg.commands.body_pitch_range[1], self.cfg.commands.body_roll_range[1],self.cfg.commands.stance_width_range[1], self.cfg.commands.stance_length_range[1], self.cfg.commands.aux_reward_coef_range[1], ]) for curriculum in self.curricula: curriculum.set_to(low=low, high=high) def _prepare_reward_function(self): """ Prepares a list of reward functions, whcih will be called to compute the total reward. Looks for self._reward_, where are names of all non zero reward scales in the cfg. """ # reward containers from go1_gym.envs.rewards.corl_rewards import CoRLRewards reward_containers = {"CoRLRewards": CoRLRewards} self.reward_container = reward_containers[self.cfg.rewards.reward_container_name](self) # remove zero scales + multiply non-zero ones by dt for key in list(self.reward_scales.keys()): scale = self.reward_scales[key] if scale == 0: self.reward_scales.pop(key) else: self.reward_scales[key] *= self.dt # prepare list of functions self.reward_functions = [] self.reward_names = [] for name, scale in self.reward_scales.items(): if name == "termination": continue if not hasattr(self.reward_container, '_reward_' + name): print(f"Warning: reward {'_reward_' + name} has nonzero coefficient but was not found!") else: self.reward_names.append(name) self.reward_functions.append(getattr(self.reward_container, '_reward_' + name)) # reward episode sums self.episode_sums = { name: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) for name in self.reward_scales.keys()} self.episode_sums["total"] = torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.episode_sums_eval = { name: -1 * torch.ones(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) for name in self.reward_scales.keys()} self.episode_sums_eval["total"] = torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) self.command_sums = { name: torch.zeros(self.num_envs, dtype=torch.float, device=self.device, requires_grad=False) for name in list(self.reward_scales.keys()) + ["lin_vel_raw", "ang_vel_raw", "lin_vel_residual", "ang_vel_residual", "ep_timesteps"]} def _create_ground_plane(self): """ Adds a ground plane to the simulation, sets friction and restitution based on the cfg. """ plane_params = gymapi.PlaneParams() plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0) plane_params.static_friction = self.cfg.terrain.static_friction plane_params.dynamic_friction = self.cfg.terrain.dynamic_friction plane_params.restitution = self.cfg.terrain.restitution self.gym.add_ground(self.sim, plane_params) def _create_heightfield(self): """ Adds a heightfield terrain to the simulation, sets parameters based on the cfg. """ hf_params = gymapi.HeightFieldParams() hf_params.column_scale = self.terrain.cfg.horizontal_scale hf_params.row_scale = self.terrain.cfg.horizontal_scale hf_params.vertical_scale = self.terrain.cfg.vertical_scale hf_params.nbRows = self.terrain.tot_cols hf_params.nbColumns = self.terrain.tot_rows hf_params.transform.p.x = -self.terrain.cfg.border_size hf_params.transform.p.y = -self.terrain.cfg.border_size hf_params.transform.p.z = 0.0 hf_params.static_friction = self.cfg.terrain.static_friction hf_params.dynamic_friction = self.cfg.terrain.dynamic_friction hf_params.restitution = self.cfg.terrain.restitution print(self.terrain.heightsamples.shape, hf_params.nbRows, hf_params.nbColumns) self.gym.add_heightfield(self.sim, self.terrain.heightsamples.T, hf_params) self.height_samples = torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) def _create_trimesh(self): """ Adds a triangle mesh terrain to the simulation, sets parameters based on the cfg. # """ tm_params = gymapi.TriangleMeshParams() tm_params.nb_vertices = self.terrain.vertices.shape[0] tm_params.nb_triangles = self.terrain.triangles.shape[0] tm_params.transform.p.x = -self.terrain.cfg.border_size tm_params.transform.p.y = -self.terrain.cfg.border_size tm_params.transform.p.z = 0.0 tm_params.static_friction = self.cfg.terrain.static_friction tm_params.dynamic_friction = self.cfg.terrain.dynamic_friction tm_params.restitution = self.cfg.terrain.restitution self.gym.add_triangle_mesh(self.sim, self.terrain.vertices.flatten(order='C'), self.terrain.triangles.flatten(order='C'), tm_params) self.height_samples = torch.tensor(self.terrain.heightsamples).view(self.terrain.tot_rows, self.terrain.tot_cols).to(self.device) def _create_envs(self): """ Creates environments: 1. loads the robot URDF/MJCF asset, 2. For each environment 2.1 creates the environment, 2.2 calls DOF and Rigid shape properties callbacks, 2.3 create actor with these properties and add them to the env 3. Store indices of different bodies of the robot """ asset_path = self.cfg.asset.file.format(MINI_GYM_ROOT_DIR=MINI_GYM_ROOT_DIR) asset_root = os.path.dirname(asset_path) asset_file = os.path.basename(asset_path) asset_options = gymapi.AssetOptions() asset_options.default_dof_drive_mode = self.cfg.asset.default_dof_drive_mode asset_options.collapse_fixed_joints = self.cfg.asset.collapse_fixed_joints asset_options.replace_cylinder_with_capsule = self.cfg.asset.replace_cylinder_with_capsule asset_options.flip_visual_attachments = self.cfg.asset.flip_visual_attachments asset_options.fix_base_link = self.cfg.asset.fix_base_link asset_options.density = self.cfg.asset.density asset_options.angular_damping = self.cfg.asset.angular_damping asset_options.linear_damping = self.cfg.asset.linear_damping asset_options.max_angular_velocity = self.cfg.asset.max_angular_velocity asset_options.max_linear_velocity = self.cfg.asset.max_linear_velocity asset_options.armature = self.cfg.asset.armature asset_options.thickness = self.cfg.asset.thickness asset_options.disable_gravity = self.cfg.asset.disable_gravity self.robot_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options) self.num_dof = self.gym.get_asset_dof_count(self.robot_asset) self.num_actuated_dof = self.num_actions self.num_bodies = self.gym.get_asset_rigid_body_count(self.robot_asset) dof_props_asset = self.gym.get_asset_dof_properties(self.robot_asset) rigid_shape_props_asset = self.gym.get_asset_rigid_shape_properties(self.robot_asset) # save body names from the asset body_names = self.gym.get_asset_rigid_body_names(self.robot_asset) self.dof_names = self.gym.get_asset_dof_names(self.robot_asset) self.num_bodies = len(body_names) self.num_dofs = len(self.dof_names) feet_names = [s for s in body_names if self.cfg.asset.foot_name in s] penalized_contact_names = [] for name in self.cfg.asset.penalize_contacts_on: penalized_contact_names.extend([s for s in body_names if name in s]) termination_contact_names = [] for name in self.cfg.asset.terminate_after_contacts_on: termination_contact_names.extend([s for s in body_names if name in s]) base_init_state_list = self.cfg.init_state.pos + self.cfg.init_state.rot + self.cfg.init_state.lin_vel + self.cfg.init_state.ang_vel self.base_init_state = to_torch(base_init_state_list, device=self.device, requires_grad=False) start_pose = gymapi.Transform() start_pose.p = gymapi.Vec3(*self.base_init_state[:3]) self.env_origins = torch.zeros(self.num_envs, 3, device=self.device, requires_grad=False) self.terrain_levels = torch.zeros(self.num_envs, device=self.device, requires_grad=False, dtype=torch.long) self.terrain_origins = torch.zeros(self.num_envs, 3, device=self.device, requires_grad=False) self.terrain_types = torch.zeros(self.num_envs, device=self.device, requires_grad=False, dtype=torch.long) self._call_train_eval(self._get_env_origins, torch.arange(self.num_envs, device=self.device)) env_lower = gymapi.Vec3(0., 0., 0.) env_upper = gymapi.Vec3(0., 0., 0.) self.actor_handles = [] self.imu_sensor_handles = [] self.envs = [] self.default_friction = rigid_shape_props_asset[1].friction self.default_restitution = rigid_shape_props_asset[1].restitution self._init_custom_buffers__() self._call_train_eval(self._randomize_rigid_body_props, torch.arange(self.num_envs, device=self.device)) self._randomize_gravity() for i in range(self.num_envs): # create env instance env_handle = self.gym.create_env(self.sim, env_lower, env_upper, int(np.sqrt(self.num_envs))) pos = self.env_origins[i].clone() pos[0:1] += torch_rand_float(-self.cfg.terrain.x_init_range, self.cfg.terrain.x_init_range, (1, 1), device=self.device).squeeze(1) pos[1:2] += torch_rand_float(-self.cfg.terrain.y_init_range, self.cfg.terrain.y_init_range, (1, 1), device=self.device).squeeze(1) start_pose.p = gymapi.Vec3(*pos) rigid_shape_props = self._process_rigid_shape_props(rigid_shape_props_asset, i) self.gym.set_asset_rigid_shape_properties(self.robot_asset, rigid_shape_props) anymal_handle = self.gym.create_actor(env_handle, self.robot_asset, start_pose, "anymal", i, self.cfg.asset.self_collisions, 0) dof_props = self._process_dof_props(dof_props_asset, i) self.gym.set_actor_dof_properties(env_handle, anymal_handle, dof_props) body_props = self.gym.get_actor_rigid_body_properties(env_handle, anymal_handle) body_props = self._process_rigid_body_props(body_props, i) self.gym.set_actor_rigid_body_properties(env_handle, anymal_handle, body_props, recomputeInertia=True) self.envs.append(env_handle) self.actor_handles.append(anymal_handle) self.feet_indices = torch.zeros(len(feet_names), dtype=torch.long, device=self.device, requires_grad=False) for i in range(len(feet_names)): self.feet_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], feet_names[i]) self.penalised_contact_indices = torch.zeros(len(penalized_contact_names), dtype=torch.long, device=self.device, requires_grad=False) for i in range(len(penalized_contact_names)): self.penalised_contact_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], penalized_contact_names[i]) self.termination_contact_indices = torch.zeros(len(termination_contact_names), dtype=torch.long, device=self.device, requires_grad=False) for i in range(len(termination_contact_names)): self.termination_contact_indices[i] = self.gym.find_actor_rigid_body_handle(self.envs[0], self.actor_handles[0], termination_contact_names[i]) # if recording video, set up camera if self.cfg.env.record_video: self.camera_props = gymapi.CameraProperties() self.camera_props.width = 360 self.camera_props.height = 240 self.rendering_camera = self.gym.create_camera_sensor(self.envs[0], self.camera_props) self.gym.set_camera_location(self.rendering_camera, self.envs[0], gymapi.Vec3(1.5, 1, 3.0), gymapi.Vec3(0, 0, 0)) if self.eval_cfg is not None: self.rendering_camera_eval = self.gym.create_camera_sensor(self.envs[self.num_train_envs], self.camera_props) self.gym.set_camera_location(self.rendering_camera_eval, self.envs[self.num_train_envs], gymapi.Vec3(1.5, 1, 3.0), gymapi.Vec3(0, 0, 0)) self.video_writer = None self.video_frames = [] self.video_frames_eval = [] self.complete_video_frames = [] self.complete_video_frames_eval = [] def render(self, mode="rgb_array"): assert mode == "rgb_array" bx, by, bz = self.root_states[0, 0], self.root_states[0, 1], self.root_states[0, 2] self.gym.set_camera_location(self.rendering_camera, self.envs[0], gymapi.Vec3(bx, by - 1.0, bz + 1.0), gymapi.Vec3(bx, by, bz)) self.gym.step_graphics(self.sim) self.gym.render_all_camera_sensors(self.sim) img = self.gym.get_camera_image(self.sim, self.envs[0], self.rendering_camera, gymapi.IMAGE_COLOR) w, h = img.shape return img.reshape([w, h // 4, 4]) def _render_headless(self): if self.record_now and self.complete_video_frames is not None and len(self.complete_video_frames) == 0: bx, by, bz = self.root_states[0, 0], self.root_states[0, 1], self.root_states[0, 2] self.gym.set_camera_location(self.rendering_camera, self.envs[0], gymapi.Vec3(bx, by - 1.0, bz + 1.0), gymapi.Vec3(bx, by, bz)) self.video_frame = self.gym.get_camera_image(self.sim, self.envs[0], self.rendering_camera, gymapi.IMAGE_COLOR) self.video_frame = self.video_frame.reshape((self.camera_props.height, self.camera_props.width, 4)) self.video_frames.append(self.video_frame) if self.record_eval_now and self.complete_video_frames_eval is not None and len( self.complete_video_frames_eval) == 0: if self.eval_cfg is not None: bx, by, bz = self.root_states[self.num_train_envs, 0], self.root_states[self.num_train_envs, 1], \ self.root_states[self.num_train_envs, 2] self.gym.set_camera_location(self.rendering_camera_eval, self.envs[self.num_train_envs], gymapi.Vec3(bx, by - 1.0, bz + 1.0), gymapi.Vec3(bx, by, bz)) self.video_frame_eval = self.gym.get_camera_image(self.sim, self.envs[self.num_train_envs], self.rendering_camera_eval, gymapi.IMAGE_COLOR) self.video_frame_eval = self.video_frame_eval.reshape( (self.camera_props.height, self.camera_props.width, 4)) self.video_frames_eval.append(self.video_frame_eval) def start_recording(self): self.complete_video_frames = None self.record_now = True def start_recording_eval(self): self.complete_video_frames_eval = None self.record_eval_now = True def pause_recording(self): self.complete_video_frames = [] self.video_frames = [] self.record_now = False def pause_recording_eval(self): self.complete_video_frames_eval = [] self.video_frames_eval = [] self.record_eval_now = False def get_complete_frames(self): if self.complete_video_frames is None: return [] return self.complete_video_frames def get_complete_frames_eval(self): if self.complete_video_frames_eval is None: return [] return self.complete_video_frames_eval def _get_env_origins(self, env_ids, cfg): """ Sets environment origins. On rough terrain the origins are defined by the terrain platforms. Otherwise create a grid. """ if cfg.terrain.mesh_type in ["heightfield", "trimesh"]: self.custom_origins = True # put robots at the origins defined by the terrain max_init_level = cfg.terrain.max_init_terrain_level min_init_level = cfg.terrain.min_init_terrain_level if not cfg.terrain.curriculum: max_init_level = cfg.terrain.num_rows - 1 if not cfg.terrain.curriculum: min_init_level = 0 if cfg.terrain.center_robots: min_terrain_level = cfg.terrain.num_rows // 2 - cfg.terrain.center_span max_terrain_level = cfg.terrain.num_rows // 2 + cfg.terrain.center_span - 1 min_terrain_type = cfg.terrain.num_cols // 2 - cfg.terrain.center_span max_terrain_type = cfg.terrain.num_cols // 2 + cfg.terrain.center_span - 1 self.terrain_levels[env_ids] = torch.randint(min_terrain_level, max_terrain_level + 1, (len(env_ids),), device=self.device) self.terrain_types[env_ids] = torch.randint(min_terrain_type, max_terrain_type + 1, (len(env_ids),), device=self.device) else: self.terrain_levels[env_ids] = torch.randint(min_init_level, max_init_level + 1, (len(env_ids),), device=self.device) self.terrain_types[env_ids] = torch.div(torch.arange(len(env_ids), device=self.device), (len(env_ids) / cfg.terrain.num_cols), rounding_mode='floor').to( torch.long) cfg.terrain.max_terrain_level = cfg.terrain.num_rows cfg.terrain.terrain_origins = torch.from_numpy(cfg.terrain.env_origins).to(self.device).to(torch.float) self.env_origins[env_ids] = cfg.terrain.terrain_origins[ self.terrain_levels[env_ids], self.terrain_types[env_ids]] else: self.custom_origins = False # create a grid of robots num_cols = np.floor(np.sqrt(len(env_ids))) num_rows = np.ceil(self.num_envs / num_cols) xx, yy = torch.meshgrid(torch.arange(num_rows), torch.arange(num_cols)) spacing = cfg.env.env_spacing self.env_origins[env_ids, 0] = spacing * xx.flatten()[:len(env_ids)] self.env_origins[env_ids, 1] = spacing * yy.flatten()[:len(env_ids)] self.env_origins[env_ids, 2] = 0. def _parse_cfg(self, cfg): self.dt = self.cfg.control.decimation * self.sim_params.dt self.obs_scales = self.cfg.obs_scales self.reward_scales = vars(self.cfg.reward_scales) self.curriculum_thresholds = vars(self.cfg.curriculum_thresholds) cfg.command_ranges = vars(cfg.commands) if cfg.terrain.mesh_type not in ['heightfield', 'trimesh']: cfg.terrain.curriculum = False max_episode_length_s = cfg.env.episode_length_s cfg.env.max_episode_length = np.ceil(max_episode_length_s / self.dt) self.max_episode_length = cfg.env.max_episode_length cfg.domain_rand.push_interval = np.ceil(cfg.domain_rand.push_interval_s / self.dt) cfg.domain_rand.rand_interval = np.ceil(cfg.domain_rand.rand_interval_s / self.dt) cfg.domain_rand.gravity_rand_interval = np.ceil(cfg.domain_rand.gravity_rand_interval_s / self.dt) cfg.domain_rand.gravity_rand_duration = np.ceil( cfg.domain_rand.gravity_rand_interval * cfg.domain_rand.gravity_impulse_duration) def _draw_debug_vis(self): """ Draws visualizations for dubugging (slows down simulation a lot). Default behaviour: draws height measurement points """ # draw height lines if not self.terrain.cfg.measure_heights: return self.gym.clear_lines(self.viewer) self.gym.refresh_rigid_body_state_tensor(self.sim) sphere_geom = gymutil.WireframeSphereGeometry(0.02, 4, 4, None, color=(1, 1, 0)) for i in range(self.num_envs): base_pos = (self.root_states[i, :3]).cpu().numpy() heights = self.measured_heights[i].cpu().numpy() height_points = quat_apply_yaw(self.base_quat[i].repeat(heights.shape[0]), self.height_points[i]).cpu().numpy() for j in range(heights.shape[0]): x = height_points[j, 0] + base_pos[0] y = height_points[j, 1] + base_pos[1] z = heights[j] sphere_pose = gymapi.Transform(gymapi.Vec3(x, y, z), r=None) gymutil.draw_lines(sphere_geom, self.gym, self.viewer, self.envs[i], sphere_pose) def _init_height_points(self, env_ids, cfg): """ Returns points at which the height measurments are sampled (in base frame) Returns: [torch.Tensor]: Tensor of shape (num_envs, self.num_height_points, 3) """ y = torch.tensor(cfg.terrain.measured_points_y, device=self.device, requires_grad=False) x = torch.tensor(cfg.terrain.measured_points_x, device=self.device, requires_grad=False) grid_x, grid_y = torch.meshgrid(x, y) cfg.env.num_height_points = grid_x.numel() points = torch.zeros(len(env_ids), cfg.env.num_height_points, 3, device=self.device, requires_grad=False) points[:, :, 0] = grid_x.flatten() points[:, :, 1] = grid_y.flatten() return points def _get_heights(self, env_ids, cfg): """ Samples heights of the terrain at required points around each robot. The points are offset by the base's position and rotated by the base's yaw Args: env_ids (List[int], optional): Subset of environments for which to return the heights. Defaults to None. Raises: NameError: [description] Returns: [type]: [description] """ if cfg.terrain.mesh_type == 'plane': return torch.zeros(len(env_ids), cfg.env.num_height_points, device=self.device, requires_grad=False) elif cfg.terrain.mesh_type == 'none': raise NameError("Can't measure height with terrain mesh type 'none'") points = quat_apply_yaw(self.base_quat[env_ids].repeat(1, cfg.env.num_height_points), self.height_points[env_ids]) + (self.root_states[env_ids, :3]).unsqueeze(1) points += self.terrain.cfg.border_size points = (points / self.terrain.cfg.horizontal_scale).long() px = points[:, :, 0].view(-1) py = points[:, :, 1].view(-1) px = torch.clip(px, 0, self.height_samples.shape[0] - 2) py = torch.clip(py, 0, self.height_samples.shape[1] - 2) heights1 = self.height_samples[px, py] heights2 = self.height_samples[px + 1, py] heights3 = self.height_samples[px, py + 1] heights = torch.min(heights1, heights2) heights = torch.min(heights, heights3) return heights.view(len(env_ids), -1) * self.terrain.cfg.vertical_scale