walk-these-ways-go2/go1_gym_deploy/utils/logger.py

80 lines
2.1 KiB
Python
Executable File

import copy
import pickle as pkl
import numpy as np
import torch
def class_to_dict(obj) -> dict:
if not hasattr(obj, "__dict__"):
return obj
result = {}
for key in dir(obj):
if key.startswith("_") or key == "terrain":
continue
element = []
val = getattr(obj, key)
if isinstance(val, list):
for item in val:
element.append(class_to_dict(item))
else:
print(key)
element = class_to_dict(val)
result[key] = element
return result
class MultiLogger:
def __init__(self):
self.loggers = {}
def add_robot(self, name, cfg):
print(name, cfg)
self.loggers[name] = EpisodeLogger(cfg)
def log(self, name, info):
self.loggers[name].log(info)
def save(self, filename):
with open(filename, 'wb') as file:
logdict = {}
for key in self.loggers.keys():
logdict[key] = [class_to_dict(self.loggers[key].cfg), self.loggers[key].infos]
pkl.dump(logdict, file)
print(f"Saved log! Number of timesteps: {[len(self.loggers[key].infos) for key in self.loggers.keys()]}; Path: {filename}")
def read_metric(self, metric, robot_name=None):
if robot_name is None:
robot_name = list(self.loggers.keys())[0]
logger = self.loggers[robot_name]
metric_arr = []
for info in logger.infos:
metric_arr += [info[metric]]
return np.array(metric_arr)
def reset(self):
for key, log in self.loggers.items():
log.reset()
class EpisodeLogger:
def __init__(self, cfg):
self.infos = []
self.cfg = cfg
def log(self, info):
for key in info.keys():
if isinstance(info[key], torch.Tensor):
info[key] = info[key].detach().cpu().numpy()
if isinstance(info[key], dict):
continue
elif "image" not in key:
info[key] = copy.deepcopy(info[key])
self.infos += [dict(info)]
def reset(self):
self.infos = []