walk-these-ways-go2/go2_gym_learn/ppo_cse/metrics_caches.py

91 lines
2.2 KiB
Python

from collections import defaultdict
from ml_logger import logger
import numpy as np
import torch
class DistCache:
def __init__(self):
"""
Args:
n: Number of slots for the cache
"""
self.cache = defaultdict(lambda: 0)
def log(self, **key_vals):
"""
Args:
slots: ids for the array
**key_vals:
"""
for k, v in key_vals.items():
count = self.cache[k + '@counts'] + 1
self.cache[k + '@counts'] = count
self.cache[k] = v + (count - 1) * self.cache[k]
self.cache[k] /= count
def get_summary(self):
ret = {
k: v
for k, v in self.cache.items()
if not k.endswith("@counts")
}
self.cache.clear()
return ret
if __name__ == '__main__':
cl = DistCache()
lin_vel = np.ones((11, 11))
ang_vel = np.zeros((5, 5))
cl.log(lin_vel=lin_vel, ang_vel=ang_vel)
lin_vel = np.zeros((11, 11))
ang_vel = np.zeros((5, 5))
cl.log(lin_vel=lin_vel, ang_vel=ang_vel)
print(cl.get_summary())
class SlotCache:
def __init__(self, n):
"""
Args:
n: Number of slots for the cache
"""
self.n = n
self.cache = defaultdict(lambda: np.zeros([n]))
def log(self, slots=None, **key_vals):
"""
Args:
slots: ids for the array
**key_vals:
"""
if slots is None:
slots = range(self.n)
for k, v in key_vals.items():
counts = self.cache[k + '@counts'][slots] + 1
self.cache[k + '@counts'][slots] = counts
self.cache[k][slots] = v + (counts - 1) * self.cache[k][slots]
self.cache[k][slots] /= counts
def get_summary(self):
ret = {
k: v
for k, v in self.cache.items()
if not k.endswith("@counts")
}
self.cache.clear()
return ret
if __name__ == '__main__':
cl = SlotCache(100)
reset_env_ids = [2, 5, 6]
lin_vel = [0.1, 0.5, 0.8]
ang_vel = [0.4, -0.4, 0.2]
cl.log(reset_env_ids, lin_vel=lin_vel, ang_vel=ang_vel)
cl.log(lin_vel=np.ones(100))