88 lines
2.9 KiB
Python
88 lines
2.9 KiB
Python
import glob
|
|
import pickle as pkl
|
|
import lcm
|
|
import sys
|
|
|
|
from go2_gym_deploy.utils.deployment_runner import DeploymentRunner
|
|
from go2_gym_deploy.envs.lcm_agent import LCMAgent
|
|
from go2_gym_deploy.utils.cheetah_state_estimator import StateEstimator
|
|
from go2_gym_deploy.utils.command_profile import *
|
|
|
|
import pathlib
|
|
|
|
lc = lcm.LCM("udpm://239.255.76.67:7667?ttl=255")
|
|
|
|
def load_and_run_policy(label, experiment_name, max_vel=1.0, max_yaw_vel=1.0):
|
|
# load agent
|
|
dirs = glob.glob(f"../../runs/{label}/*")
|
|
logdir = sorted(dirs)[0]
|
|
|
|
# with open(logdir+"/parameters.pkl", 'rb') as file:
|
|
with open(logdir+"/parameters_cpu.pkl", 'rb') as file:
|
|
pkl_cfg = pkl.load(file).to('cpu')
|
|
print(pkl_cfg.keys())
|
|
cfg = pkl_cfg["Cfg"]
|
|
print(cfg.keys())
|
|
|
|
print('Config successfully loaded!')
|
|
|
|
se = StateEstimator(lc)
|
|
|
|
control_dt = 0.02
|
|
command_profile = RCControllerProfile(dt=control_dt, state_estimator=se, x_scale=max_vel, y_scale=0.6, yaw_scale=max_yaw_vel)
|
|
|
|
hardware_agent = LCMAgent(cfg, se, command_profile)
|
|
se.spin()
|
|
|
|
from go2_gym_deploy.envs.history_wrapper import HistoryWrapper
|
|
hardware_agent = HistoryWrapper(hardware_agent)
|
|
print('Agent successfully created!')
|
|
|
|
policy = load_policy(logdir)
|
|
print('Policy successfully loaded!')
|
|
|
|
# load runner
|
|
root = f"{pathlib.Path(__file__).parent.resolve()}/../../logs/"
|
|
pathlib.Path(root).mkdir(parents=True, exist_ok=True)
|
|
deployment_runner = DeploymentRunner(experiment_name=experiment_name, se=None,
|
|
log_root=f"{root}/{experiment_name}")
|
|
deployment_runner.add_control_agent(hardware_agent, "hardware_closed_loop")
|
|
deployment_runner.add_policy(policy)
|
|
deployment_runner.add_command_profile(command_profile)
|
|
|
|
if len(sys.argv) >= 2:
|
|
max_steps = int(sys.argv[1])
|
|
else:
|
|
max_steps = 10000000
|
|
print(f'max steps {max_steps}')
|
|
|
|
deployment_runner.run(max_steps=max_steps, logging=True)
|
|
|
|
def load_policy(logdir):
|
|
# try ------------------
|
|
# body = torch.jit.load(logdir + '/checkpoints/body_latest.jit').to('cpu')
|
|
body = torch.jit.load(logdir + '/checkpoints/body_latest.jit')
|
|
|
|
import os
|
|
adaptation_module = torch.jit.load(logdir + '/checkpoints/adaptation_module_latest.jit').to('cpu')
|
|
|
|
def policy(obs, info):
|
|
i = 0
|
|
latent = adaptation_module.forward(obs["obs_history"].to('cpu'))
|
|
action = body.forward(torch.cat((obs["obs_history"].to('cpu'), latent), dim=-1))
|
|
info['latent'] = latent
|
|
return action
|
|
|
|
return policy
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# label = "gait-conditioned-agility/pretrain-v0/train"
|
|
label = "gait-conditioned-agility/pretrain-go2/train"
|
|
|
|
experiment_name = "example_experiment"
|
|
|
|
# default:
|
|
# max_vel=3.5, max_yaw_vel=5.0
|
|
load_and_run_policy(label, experiment_name=experiment_name, max_vel=2.5, max_yaw_vel=5.0)
|