z1_controller/include/common/math/mathTools.h

482 lines
13 KiB
C
Raw Normal View History

2022-07-20 11:11:38 +08:00
#ifndef MATHTOOLS_H
#define MATHTOOLS_H
#include <iostream>
// #include "common/mathTypes.h"
// template<typename T1, typename T2>
// inline T1 max(const T1 a, const T2 b){
// return (a > b ? a : b);
// }
// template<typename T1, typename T2>
// inline T1 min(const T1 a, const T2 b){
// return (a < b ? a : b);
// }
template<typename T>
T max(T value){
return value;
}
template<typename T, typename... Args>
inline T max(const T val0, const Args... restVal){
return val0 > (max<T>(restVal...)) ? val0 : max<T>(restVal...);
}
template<typename T>
T min(T value){
return value;
}
template<typename T, typename... Args>
inline T min(const T val0, const Args... restVal){
return val0 > (min<T>(restVal...)) ? val0 : min<T>(restVal...);
}
inline Mat2 skew(const double& w){
Mat2 mat; mat.setZero();
mat(0, 1) = -w;
mat(1, 0) = w;
return mat;
}
inline Mat3 skew(const Vec3& v) {
Mat3 m;
m << 0, -v(2), v(1),
v(2), 0, -v(0),
-v(1), v(0), 0;
return m;
}
enum class TurnDirection{
NOMATTER,
POSITIVE,
NEGATIVE
};
/* first - second */
inline double angleError(double first, double second, TurnDirection direction = TurnDirection::NOMATTER){
double firstMod = fmod(first, 2.0*M_PI);
double secondMod = fmod(second, 2.0*M_PI);
if(direction == TurnDirection::NOMATTER){
if(fabs(firstMod - secondMod) > fabs(secondMod - firstMod)){
return secondMod - firstMod;
}else{
return firstMod - secondMod;
}
}
else if(direction == TurnDirection::POSITIVE){
if(firstMod - secondMod < 0.0){
return 2*M_PI + firstMod - secondMod;
}else{
return firstMod - secondMod;
}
}
else if(direction == TurnDirection::NEGATIVE){
if(firstMod - secondMod > 0.0){
return -2*M_PI + firstMod - secondMod;
}else{
return firstMod - secondMod;
}
}
}
/* firstVec - secondVec */
inline VecX angleError(VecX firstVec, VecX secondVec, TurnDirection directionMatter = TurnDirection::NOMATTER){
if(firstVec.rows() != secondVec.rows()){
std::cout << "[ERROR] angleError, the sizes of firstVec and secondVec are different!" << std::endl;
}
VecX result = firstVec;
for(int i(0); i<firstVec.rows(); ++i){
result(i) = angleError(firstVec(i), secondVec(i), directionMatter);
}
return result;
}
inline bool vectorEqual(VecX v1, VecX v2, double tolerance){
if(v1.rows() != v2.rows()){
std::cout << "[WARNING] vectorEqual, the size of two vectors is not equal, v1 is "
<< v1.rows() << ", v2 is " << v2.rows() << std::endl;
return false;
}
for(int i(0); i<v1.rows(); ++i){
if(fabs(v1(i)-v2(i))>tolerance){
return false;
}
}
return true;
}
inline bool inInterval(double value, double limValue1, double limValue2, bool canEqual1 = false, bool canEqual2 = false){
double lowLim, highLim;
bool lowEqual, highEqual;
if(limValue1 >= limValue2){
highLim = limValue1;
highEqual = canEqual1;
lowLim = limValue2;
lowEqual = canEqual2;
}else{
lowLim = limValue1;
lowEqual = canEqual1;
highLim = limValue2;
highEqual = canEqual2;
}
if((value > highLim) || (value < lowLim)){
return false;
}
if((value == highLim) && !highEqual){
return false;
}
if((value == lowLim) && !lowEqual){
return false;
}
return true;
}
inline double saturation(const double a, double limValue1, double limValue2){
double lowLim, highLim;
if(limValue1 >= limValue2){
lowLim = limValue2;
highLim= limValue1;
}else{
lowLim = limValue1;
highLim= limValue2;
}
if(a < lowLim){
return lowLim;
}
else if(a > highLim){
return highLim;
}
else{
return a;
}
}
inline double saturation(const double a, Vec2 limits){
return saturation(a, limits(0), limits(1));
}
template<typename T0, typename T1>
inline T0 killZeroOffset(T0 a, const T1 limit){
if((a > -limit) && (a < limit)){
a = 0;
}
return a;
}
template<typename T0, typename T1, typename T2>
inline T1 invNormalize(const T0 value, const T1 min, const T2 max, const double minLim = -1, const double maxLim = 1){
return (value-minLim)*(max-min)/(maxLim-minLim) + min;
}
// x: [0, 1], windowRatio: (0, 0.5)
template<typename T>
inline T windowFunc(const T x, const T windowRatio, const T xRange=1.0, const T yRange=1.0){
if((x < 0)||(x > xRange)){
// printf("[ERROR] The x of function windowFunc should between [0, xRange]\n");
std::cout << "[ERROR][windowFunc] The x=" << x << ", which should between [0, xRange]" << std::endl;
}
if((windowRatio <= 0)||(windowRatio >= 0.5)){
// printf("[ERROR] The windowRatio of function windowFunc should between (0, 0.5)\n");
std::cout << "[ERROR][windowFunc] The windowRatio=" << windowRatio << ", which should between [0, 0.5]" << std::endl;
}
if(x/xRange < windowRatio){
return x * yRange / (xRange * windowRatio);
}
else if(x/xRange > 1 - windowRatio){
return yRange * (xRange - x)/(xRange * windowRatio);
}
else{
return yRange;
}
}
template<typename T1, typename T2>
inline void updateAverage(T1 &exp, T2 newValue, double n){
if(exp.rows()!=newValue.rows()){
std::cout << "The size of updateAverage is error" << std::endl;
exit(-1);
}
if(fabs(n - 1) < 0.001){
exp = newValue;
}else{
exp = exp + (newValue - exp)/n;
}
}
template<typename T1, typename T2, typename T3>
inline void updateCovariance(T1 &cov, T2 expPast, T3 newValue, double n){
if( (cov.rows()!=cov.cols()) || (cov.rows() != expPast.rows()) || (expPast.rows()!=newValue.rows())){
std::cout << "The size of updateCovariance is error" << std::endl;
exit(-1);
}
if(fabs(n - 1) < 0.1){
cov.setZero();
}else{
cov = cov*(n-1)/n + (newValue-expPast)*(newValue-expPast).transpose()*(n-1)/(n*n);
}
}
template<typename T1, typename T2, typename T3>
inline void updateAvgCov(T1 &cov, T2 &exp, T3 newValue, double n){
// The order matters!!! covariance first!!!
updateCovariance(cov, exp, newValue, n);
updateAverage(exp, newValue, n);
}
/* rotate matrix about x axis */
inline RotMat rotX(const double &theta) {
double s = std::sin(theta);
double c = std::cos(theta);
RotMat R;
R << 1, 0, 0, 0, c, -s, 0, s, c;
return R;
}
/* rotate matrix about y axis */
inline RotMat rotY(const double &theta) {
double s = std::sin(theta);
double c = std::cos(theta);
RotMat R;
R << c, 0, s, 0, 1, 0, -s, 0, c;
return R;
}
/* rotate matrix about z axis */
inline RotMat rotZ(const double &theta) {
double s = std::sin(theta);
double c = std::cos(theta);
RotMat R;
R << c, -s, 0, s, c, 0, 0, 0, 1;
return R;
}
inline RotMat so3ToRotMat(const Vec3& _rot){
RotMat R;
double theta = _rot.norm();
if (fabs(theta) <1e-6)
R = RotMat::Identity();
else{
Vec3 u_axis(_rot/theta);
double cos_theta = cos(theta);
R = cos_theta*RotMat::Identity()+sin(theta)*skew(u_axis) +(1-cos_theta)*(u_axis*u_axis.transpose());
}
return R;
}
/* row pitch yaw to rotate matrix */
inline RotMat rpyToRotMat(const double& row, const double& pitch, const double& yaw) {
RotMat m = rotZ(yaw) * rotY(pitch) * rotX(row);
return m;
}
inline RotMat quatToRotMat(const Quat& q) {
double e0 = q(0);
double e1 = q(1);
double e2 = q(2);
double e3 = q(3);
RotMat R;
R << 1 - 2 * (e2 * e2 + e3 * e3), 2 * (e1 * e2 - e0 * e3),
2 * (e1 * e3 + e0 * e2), 2 * (e1 * e2 + e0 * e3),
1 - 2 * (e1 * e1 + e3 * e3), 2 * (e2 * e3 - e0 * e1),
2 * (e1 * e3 - e0 * e2), 2 * (e2 * e3 + e0 * e1),
1 - 2 * (e1 * e1 + e2 * e2);
return R;
}
inline Vec3 rotMatToRPY(const Mat3& R) {
Vec3 rpy;
rpy(0) = atan2(R(2,1),R(2,2));//asin(R(2,1)/cos(rpy(1))); // atan2(R(2,1),R(2,2));
rpy(1) = asin(-R(2,0));
rpy(2) = atan2(R(1,0),R(0,0));
return rpy;
}
/* rotate matrix to exponential coordinate(omega*theta) */
inline Vec3 rotMatToExp(const RotMat& rm){
double cosValue = rm.trace()/2.0-1/2.0;
if(cosValue > 1.0f){
cosValue = 1.0f;
}else if(cosValue < -1.0f){
cosValue = -1.0f;
}
double angle = acos(cosValue);
Vec3 exp;
if (fabs(angle) < 1e-5){
exp=Vec3(0,0,0);
}
else if (fabs(angle - M_PI) < 1e-5){
exp = angle * Vec3(rm(0,0)+1, rm(0,1), rm(0,2)) / sqrt(2*(1+rm(0, 0)));
}
else{
exp=angle/(2.0f*sin(angle))*Vec3(rm(2,1)-rm(1,2),rm(0,2)-rm(2,0),rm(1,0)-rm(0,1));
}
return exp;
}
/* add 1 at the end of Vec3 */
inline Vec4 homoVec(Vec3 v3, double end = 1.0){
Vec4 v4;
v4.block(0, 0, 3, 1) = v3;
v4(3) = end;
return v4;
}
/* remove 1 at the end of Vec4 */
inline Vec3 noHomoVec(Vec4 v4){
Vec3 v3;
v3 = v4.block(0, 0, 3, 1);
return v3;
}
/* build Homogeneous Matrix by p and m */
inline HomoMat homoMatrix(Vec3 p, Mat3 m){
HomoMat homoM;
homoM.setZero();
homoM.topLeftCorner(3, 3) = m;
homoM.topRightCorner(3, 1) = p;
homoM(3, 3) = 1;
return homoM;
}
/* build Homogeneous Matrix by p and w */
inline HomoMat homoMatrix(Vec3 p, Vec3 w){
HomoMat homoM;
homoM.setZero();
homoM.topLeftCorner(3, 3) = so3ToRotMat(w);
homoM.topRightCorner(3, 1) = p;
homoM(3, 3) = 1;
return homoM;
}
/* build Homogeneous Matrix by x axis, y axis and p */
inline HomoMat homoMatrix(Vec3 x, Vec3 y, Vec3 p){
HomoMat homoM;
homoM.setZero();
Vec3 xN = x.normalized();
Vec3 yN = y.normalized();
homoM.block(0, 0, 3, 1) = xN;
homoM.block(0, 1, 3, 1) = yN;
homoM.block(0, 2, 3, 1) = skew(xN) * yN;
homoM.topRightCorner(3, 1) = p;
homoM(3, 3) = 1;
return homoM;
}
/* build Homogeneous Matrix of rotate joint */
inline HomoMat homoMatrixRotate(Vec3 q, Vec3 w){
HomoMat homoM;
Mat3 eye3 = Mat3::Identity();
Mat3 rotateM = so3ToRotMat(w);
homoM.setZero();
homoM.topLeftCorner(3, 3) = rotateM;
homoM.topRightCorner(3, 1) = (eye3 - rotateM) * q;
// homoM.topRightCorner(3, 1) = q;
homoM(3, 3) = 1;
return homoM;
}
/* build Homogeneous Matrix by posture */
inline HomoMat homoMatrixPosture(Vec6 posture){
HomoMat homoM;
homoM.setZero();
homoM.topLeftCorner(3, 3) = rpyToRotMat(posture(0),posture(1),posture(2));
homoM.topRightCorner(3, 1) << posture(3),posture(4),posture(5);
homoM(3, 3) = 1;
return homoM;
}
/* inverse matrix of homogeneous matrix */
inline HomoMat homoMatrixInverse(HomoMat homoM){
HomoMat homoInv;
homoInv.setZero();
homoInv.topLeftCorner(3, 3) = homoM.topLeftCorner(3, 3).transpose();
homoInv.topRightCorner(3, 1) = -homoM.topLeftCorner(3, 3).transpose() * homoM.topRightCorner(3, 1);
homoInv(3, 3) = 1;
return homoInv;
}
/* get position of Homogeneous Matrix */
inline Vec3 getHomoPosition(HomoMat mat){
return mat.block(0, 3, 3, 1);
}
/* get rotate matrix of Homogeneous Matrix */
inline RotMat getHomoRotMat(HomoMat mat){
return mat.block(0, 0, 3, 3);
}
/* convert homogeneous matrix to posture vector */
inline Vec6 homoToPosture(HomoMat mat){
Vec6 posture;
posture.block(0,0,3,1) = rotMatToRPY(getHomoRotMat(mat));
posture.block(3,0,3,1) = getHomoPosition(mat);
return posture;
}
/* convert posture vector matrix to homogeneous */
inline HomoMat postureToHomo(Vec6 posture){
HomoMat homoM;
homoM.setZero();
homoM.topLeftCorner(3, 3) = rpyToRotMat(posture(0), posture(1), posture(2));
homoM.topRightCorner(3, 1) << posture(3), posture(4), posture(5);
homoM(3, 3) = 1;
return homoM;
}
// Calculate average value and covariance
class AvgCov{
public:
AvgCov(unsigned int size, std::string name, bool avgOnly=false, unsigned int showPeriod=1000, unsigned int waitCount=5000, double zoomFactor=10000)
:_size(size), _showPeriod(showPeriod), _waitCount(waitCount), _zoomFactor(zoomFactor), _valueName(name), _avgOnly(avgOnly) {
_exp.resize(size);
_cov.resize(size, size);
_defaultWeight.resize(size, size);
_defaultWeight.setIdentity();
_measureCount = 0;
}
void measure(VecX newValue){
++_measureCount;
if(_measureCount > _waitCount){
updateAvgCov(_cov, _exp, newValue, _measureCount-_waitCount);
if(_measureCount % _showPeriod == 0){
// if(_measureCount < _waitCount + 5){
std::cout << "******" << _valueName << " measured count: " << _measureCount-_waitCount << "******" << std::endl;
// std::cout << _zoomFactor << " Times newValue of " << _valueName << std::endl << (_zoomFactor*newValue).transpose() << std::endl;
std::cout << _zoomFactor << " Times Average of " << _valueName << std::endl << (_zoomFactor*_exp).transpose() << std::endl;
if(!_avgOnly){
std::cout << _zoomFactor << " Times Covariance of " << _valueName << std::endl << _zoomFactor*_cov << std::endl;
}
}
}
}
private:
VecX _exp;
MatX _cov;
MatX _defaultWeight;
bool _avgOnly;
unsigned int _size;
unsigned int _measureCount;
unsigned int _showPeriod;
unsigned int _waitCount;
double _zoomFactor;
std::string _valueName;
};
#endif // MATHTOOLS_H