z1_sdk/pybind11/tests/test_numpy_vectorize.py

206 lines
8.8 KiB
Python
Raw Normal View History

2023-01-30 20:28:13 +08:00
# -*- coding: utf-8 -*-
import pytest
from pybind11_tests import numpy_vectorize as m
np = pytest.importorskip("numpy")
def test_vectorize(capture):
assert np.isclose(m.vectorized_func3(np.array(3 + 7j)), [6 + 14j])
for f in [m.vectorized_func, m.vectorized_func2]:
with capture:
assert np.isclose(f(1, 2, 3), 6)
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
with capture:
assert np.isclose(f(np.array(1), np.array(2), 3), 6)
assert capture == "my_func(x:int=1, y:float=2, z:float=3)"
with capture:
assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36])
assert capture == """
my_func(x:int=1, y:float=2, z:float=3)
my_func(x:int=3, y:float=4, z:float=3)
"""
with capture:
a = np.array([[1, 2], [3, 4]], order='F')
b = np.array([[10, 20], [30, 40]], order='F')
c = 3
result = f(a, b, c)
assert np.allclose(result, a * b * c)
assert result.flags.f_contiguous
# All inputs are F order and full or singletons, so we the result is in col-major order:
assert capture == """
my_func(x:int=1, y:float=10, z:float=3)
my_func(x:int=3, y:float=30, z:float=3)
my_func(x:int=2, y:float=20, z:float=3)
my_func(x:int=4, y:float=40, z:float=3)
"""
with capture:
a, b, c = np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=3)
my_func(x:int=3, y:float=4, z:float=3)
my_func(x:int=5, y:float=6, z:float=3)
my_func(x:int=7, y:float=8, z:float=3)
my_func(x:int=9, y:float=10, z:float=3)
my_func(x:int=11, y:float=12, z:float=3)
"""
with capture:
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=2)
my_func(x:int=2, y:float=3, z:float=2)
my_func(x:int=3, y:float=4, z:float=2)
my_func(x:int=4, y:float=2, z:float=2)
my_func(x:int=5, y:float=3, z:float=2)
my_func(x:int=6, y:float=4, z:float=2)
"""
with capture:
a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=2)
my_func(x:int=2, y:float=2, z:float=2)
my_func(x:int=3, y:float=2, z:float=2)
my_func(x:int=4, y:float=3, z:float=2)
my_func(x:int=5, y:float=3, z:float=2)
my_func(x:int=6, y:float=3, z:float=2)
"""
with capture:
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F'), np.array([[2], [3]]), 2
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=2)
my_func(x:int=2, y:float=2, z:float=2)
my_func(x:int=3, y:float=2, z:float=2)
my_func(x:int=4, y:float=3, z:float=2)
my_func(x:int=5, y:float=3, z:float=2)
my_func(x:int=6, y:float=3, z:float=2)
"""
with capture:
a, b, c = np.array([[1, 2, 3], [4, 5, 6]])[::, ::2], np.array([[2], [3]]), 2
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=2)
my_func(x:int=3, y:float=2, z:float=2)
my_func(x:int=4, y:float=3, z:float=2)
my_func(x:int=6, y:float=3, z:float=2)
"""
with capture:
a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F')[::, ::2], np.array([[2], [3]]), 2
assert np.allclose(f(a, b, c), a * b * c)
assert capture == """
my_func(x:int=1, y:float=2, z:float=2)
my_func(x:int=3, y:float=2, z:float=2)
my_func(x:int=4, y:float=3, z:float=2)
my_func(x:int=6, y:float=3, z:float=2)
"""
def test_type_selection():
assert m.selective_func(np.array([1], dtype=np.int32)) == "Int branch taken."
assert m.selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken."
assert m.selective_func(np.array([1.0j], dtype=np.complex64)) == "Complex float branch taken."
def test_docs(doc):
assert doc(m.vectorized_func) == """
vectorized_func(arg0: numpy.ndarray[numpy.int32], arg1: numpy.ndarray[numpy.float32], arg2: numpy.ndarray[numpy.float64]) -> object
""" # noqa: E501 line too long
def test_trivial_broadcasting():
trivial, vectorized_is_trivial = m.trivial, m.vectorized_is_trivial
assert vectorized_is_trivial(1, 2, 3) == trivial.c_trivial
assert vectorized_is_trivial(np.array(1), np.array(2), 3) == trivial.c_trivial
assert vectorized_is_trivial(np.array([1, 3]), np.array([2, 4]), 3) == trivial.c_trivial
assert trivial.c_trivial == vectorized_is_trivial(
np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3)
assert vectorized_is_trivial(
np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2) == trivial.non_trivial
assert vectorized_is_trivial(
np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2) == trivial.non_trivial
z1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype='int32')
z2 = np.array(z1, dtype='float32')
z3 = np.array(z1, dtype='float64')
assert vectorized_is_trivial(z1, z2, z3) == trivial.c_trivial
assert vectorized_is_trivial(1, z2, z3) == trivial.c_trivial
assert vectorized_is_trivial(z1, 1, z3) == trivial.c_trivial
assert vectorized_is_trivial(z1, z2, 1) == trivial.c_trivial
assert vectorized_is_trivial(z1[::2, ::2], 1, 1) == trivial.non_trivial
assert vectorized_is_trivial(1, 1, z1[::2, ::2]) == trivial.c_trivial
assert vectorized_is_trivial(1, 1, z3[::2, ::2]) == trivial.non_trivial
assert vectorized_is_trivial(z1, 1, z3[1::4, 1::4]) == trivial.c_trivial
y1 = np.array(z1, order='F')
y2 = np.array(y1)
y3 = np.array(y1)
assert vectorized_is_trivial(y1, y2, y3) == trivial.f_trivial
assert vectorized_is_trivial(y1, 1, 1) == trivial.f_trivial
assert vectorized_is_trivial(1, y2, 1) == trivial.f_trivial
assert vectorized_is_trivial(1, 1, y3) == trivial.f_trivial
assert vectorized_is_trivial(y1, z2, 1) == trivial.non_trivial
assert vectorized_is_trivial(z1[1::4, 1::4], y2, 1) == trivial.f_trivial
assert vectorized_is_trivial(y1[1::4, 1::4], z2, 1) == trivial.c_trivial
assert m.vectorized_func(z1, z2, z3).flags.c_contiguous
assert m.vectorized_func(y1, y2, y3).flags.f_contiguous
assert m.vectorized_func(z1, 1, 1).flags.c_contiguous
assert m.vectorized_func(1, y2, 1).flags.f_contiguous
assert m.vectorized_func(z1[1::4, 1::4], y2, 1).flags.f_contiguous
assert m.vectorized_func(y1[1::4, 1::4], z2, 1).flags.c_contiguous
def test_passthrough_arguments(doc):
assert doc(m.vec_passthrough) == (
"vec_passthrough(" + ", ".join([
"arg0: float",
"arg1: numpy.ndarray[numpy.float64]",
"arg2: numpy.ndarray[numpy.float64]",
"arg3: numpy.ndarray[numpy.int32]",
"arg4: int",
"arg5: m.numpy_vectorize.NonPODClass",
"arg6: numpy.ndarray[numpy.float64]"]) + ") -> object")
b = np.array([[10, 20, 30]], dtype='float64')
c = np.array([100, 200]) # NOT a vectorized argument
d = np.array([[1000], [2000], [3000]], dtype='int')
g = np.array([[1000000, 2000000, 3000000]], dtype='int') # requires casting
assert np.all(
m.vec_passthrough(1, b, c, d, 10000, m.NonPODClass(100000), g) ==
np.array([[1111111, 2111121, 3111131],
[1112111, 2112121, 3112131],
[1113111, 2113121, 3113131]]))
def test_method_vectorization():
o = m.VectorizeTestClass(3)
x = np.array([1, 2], dtype='int')
y = np.array([[10], [20]], dtype='float32')
assert np.all(o.method(x, y) == [[14, 15], [24, 25]])
def test_array_collapse():
assert not isinstance(m.vectorized_func(1, 2, 3), np.ndarray)
assert not isinstance(m.vectorized_func(np.array(1), 2, 3), np.ndarray)
z = m.vectorized_func([1], 2, 3)
assert isinstance(z, np.ndarray)
assert z.shape == (1, )
z = m.vectorized_func(1, [[[2]]], 3)
assert isinstance(z, np.ndarray)
assert z.shape == (1, 1, 1)
def test_vectorized_noreturn():
x = m.NonPODClass(0)
assert x.value == 0
m.add_to(x, [1, 2, 3, 4])
assert x.value == 10
m.add_to(x, 1)
assert x.value == 11
m.add_to(x, [[1, 1], [2, 3]])
assert x.value == 18