z1_sdk/include/unitree_arm_sdk/thirdparty/robotics.h

535 lines
19 KiB
C
Raw Normal View History

#pragma once
#include <vector>
2022-12-01 17:30:05 +08:00
#include "unitree_arm_sdk/math/mathTools.h"
namespace robo {
/*
* Function: Find if the value is negligible enough to consider 0
* Inputs: value to be checked as a double
* Returns: Boolean of true-ignore or false-can't ignore
*/
bool NearZero(const double);
Mat6 rot(const Mat3& E);
Mat6 xlt(const Vec3& r);
/* rotate matrix about x axis */
RotMat rotX(const double &);
RotMat rx(const double &xrot);
/* rotate matrix about y axis */
RotMat rotY(const double &);
RotMat ry(const double &yrot);
/* rotate matrix about z axis */
RotMat rotZ(const double &);
RotMat rz(const double &zrot);
/* row pitch yaw to rotate matrix */
RotMat rpyToRotMat(const double&, const double&, const double&);
RotMat rpyToRotMat(const Vec3& rpy);
Vec3 rotMatToRPY(const Mat3& );
RotMat quatToRotMat(const Quat&);
/* convert homogeneous matrix to posture vector */
Vec6 homoToPosture(HomoMat);
/* convert posture vector matrix to homogeneous */
HomoMat postureToHomo(Vec6);
RotMat getHomoRotMat(HomoMat T);
Vec3 getHomoPosition(HomoMat T);
HomoMat homoMatrix(Vec3 x, Vec3 y, Vec3 p);
/*
* Function: Calculate the 6x6 matrix [adV] of the given 6-vector
* Input: Eigen::VectorXd (6x1)
* Output: Eigen::MatrixXd (6x6)
* Note: Can be used to calculate the Lie bracket [V1, V2] = [adV1]V2
*/
Eigen::MatrixXd ad(Eigen::VectorXd);
/*
* Function: Returns a normalized version of the input vector
* Input: Eigen::MatrixXd
* Output: Eigen::MatrixXd
* Note: MatrixXd is used instead of VectorXd for the case of row vectors
* Requires a copy
* Useful because of the MatrixXd casting
*/
Eigen::MatrixXd Normalize(Eigen::MatrixXd);
/*
* Function: Returns the skew symmetric matrix representation of an angular velocity vector
* Input: Eigen::Vector3d 3x1 angular velocity vector
* Returns: Eigen::MatrixXd 3x3 skew symmetric matrix
*/
Eigen::Matrix3d VecToso3(const Eigen::Vector3d&);
/*
* Function: Returns angular velocity vector represented by the skew symmetric matrix
* Inputs: Eigen::MatrixXd 3x3 skew symmetric matrix
* Returns: Eigen::Vector3d 3x1 angular velocity
*/
Eigen::Vector3d so3ToVec(const Eigen::MatrixXd&);
/*
* Function: Tranlates an exponential rotation into it's individual components
* Inputs: Exponential rotation (rotation matrix in terms of a rotation axis
* and the angle of rotation)
* Returns: The axis and angle of rotation as [x, y, z, theta]
*/
Eigen::Vector4d AxisAng3(const Eigen::Vector3d&);
/*
* Function: Translates an exponential rotation into a rotation matrix
* Inputs: exponenential representation of a rotation
* Returns: Rotation matrix
*/
Eigen::Matrix3d MatrixExp3(const Eigen::Matrix3d&);
/* Function: Computes the matrix logarithm of a rotation matrix
* Inputs: Rotation matrix
* Returns: matrix logarithm of a rotation
*/
Eigen::Matrix3d MatrixLog3(const Eigen::Matrix3d&);
/*
* Function: Combines a rotation matrix and position vector into a single
* Special Euclidian Group (SE3) homogeneous transformation matrix
* Inputs: Rotation Matrix (R), Position Vector (p)
* Returns: Matrix of T = [ [R, p],
* [0, 1] ]
*/
Eigen::MatrixXd RpToTrans(const Eigen::Matrix3d&, const Eigen::Vector3d&);
/*
* Function: Separates the rotation matrix and position vector from
* the transfomation matrix representation
* Inputs: Homogeneous transformation matrix
* Returns: std::vector of [rotation matrix, position vector]
*/
std::vector<Eigen::MatrixXd> TransToRp(const Eigen::MatrixXd&);
/*
* Function: Translates a spatial velocity vector into a transformation matrix
* Inputs: Spatial velocity vector [angular velocity, linear velocity]
* Returns: Transformation matrix
*/
Eigen::MatrixXd VecTose3(const Eigen::VectorXd&);
/* Function: Translates a transformation matrix into a spatial velocity vector
* Inputs: Transformation matrix
* Returns: Spatial velocity vector [angular velocity, linear velocity]
*/
Eigen::VectorXd se3ToVec(const Eigen::MatrixXd&);
/*
* Function: Provides the adjoint representation of a transformation matrix
* Used to change the frame of reference for spatial velocity vectors
* Inputs: 4x4 Transformation matrix SE(3)
* Returns: 6x6 Adjoint Representation of the matrix
*/
Eigen::MatrixXd Adjoint(const Eigen::MatrixXd&);
/*
* Function: Rotation expanded for screw axis
* Inputs: se3 matrix representation of exponential coordinates (transformation matrix)
* Returns: 6x6 Matrix representing the rotation
*/
Eigen::MatrixXd MatrixExp6(const Eigen::MatrixXd&);
/*
* Function: Computes the matrix logarithm of a homogeneous transformation matrix
* Inputs: R: Transformation matrix in SE3
* Returns: The matrix logarithm of R
*/
Eigen::MatrixXd MatrixLog6(const Eigen::MatrixXd&);
/*
* Functions: Tranforms 3D motion vector form A to B coordinates
* Input: T: the cordinate transform form A to B coordiantes for a motion vector
* Return : BX_A
*/
Mat6 CoordinateTransMotionVector(const HomoMat& T);
/*
* Functions: Tranforms 3D force vector form A to B coordinates
* Input: T: the cordinate transform form A to B coordiantes for a force vector
* Return : {BX_A}*
*/
Mat6 CoordinateTransForceVector(const HomoMat& T);
/*
* Function: Compute end effector frame (used for current spatial position calculation)
* Inputs: Home configuration (position and orientation) of end-effector
* The joint screw axes in the space frame when the manipulator
* is at the home position
* A list of joint coordinates.
* Returns: Transfomation matrix representing the end-effector frame when the joints are
* at the specified coordinates
* Notes: FK means Forward Kinematics
*/
Eigen::MatrixXd FKinSpace(const Eigen::MatrixXd&, const Eigen::MatrixXd&, const Eigen::VectorXd&);
/*
* Function: Compute end effector frame (used for current body position calculation)
* Inputs: Home configuration (position and orientation) of end-effector
* The joint screw axes in the body frame when the manipulator
* is at the home position
* A list of joint coordinates.
* Returns: Transfomation matrix representing the end-effector frame when the joints are
* at the specified coordinates
* Notes: FK means Forward Kinematics
*/
Eigen::MatrixXd FKinBody(const Eigen::MatrixXd&, const Eigen::MatrixXd&, const Eigen::VectorXd&);
/*
* Function: Gives the space Jacobian
* Inputs: Screw axis in home position, joint configuration
* Returns: 6xn Spatial Jacobian
*/
Eigen::MatrixXd JacobianSpace(const Eigen::MatrixXd&, const Eigen::MatrixXd&);
/*
* Function: Gives the body Jacobian
* Inputs: Screw axis in BODY position, joint configuration
* Returns: 6xn Bobdy Jacobian
*/
Eigen::MatrixXd JacobianBody(const Eigen::MatrixXd&, const Eigen::MatrixXd&);
/*
* Inverts a homogeneous transformation matrix
* Inputs: A homogeneous transformation Matrix T
* Returns: The inverse of T
*/
Eigen::MatrixXd TransInv(const Eigen::MatrixXd&);
/*
* Inverts a rotation matrix
* Inputs: A rotation matrix R
* Returns: The inverse of R
*/
Eigen::MatrixXd RotInv(const Eigen::MatrixXd&);
/*
* Takes a parametric description of a screw axis and converts it to a
* normalized screw axis
* Inputs:
* q: A point lying on the screw axis
* s: A unit vector in the direction of the screw axis
* h: The pitch of the screw axis
* Returns: A normalized screw axis described by the inputs
*/
Eigen::VectorXd ScrewToAxis(Eigen::Vector3d q, Eigen::Vector3d s, double h);
/*
* Function: Translates a 6-vector of exponential coordinates into screw
* axis-angle form
* Inputs:
* expc6: A 6-vector of exponential coordinates for rigid-body motion
S*theta
* Returns: The corresponding normalized screw axis S; The distance theta traveled
* along/about S in form [S, theta]
* Note: Is it better to return std::map<S, theta>?
*/
Eigen::VectorXd AxisAng6(const Eigen::VectorXd&);
/*
* Function: Returns projection of one matrix into SO(3)
* Inputs:
* M: A matrix near SO(3) to project to SO(3)
* Returns: The closest matrix R that is in SO(3)
* Projects a matrix mat to the closest matrix in SO(3) using singular-value decomposition
* (see http://hades.mech.northwestern.edu/index.php/Modern_Robotics_Linear_Algebra_Review).
* This function is only appropriate for matrices close to SO(3).
*/
Eigen::MatrixXd ProjectToSO3(const Eigen::MatrixXd&);
/*
* Function: Returns projection of one matrix into SE(3)
* Inputs:
* M: A 4x4 matrix near SE(3) to project to SE(3)
* Returns: The closest matrix T that is in SE(3)
* Projects a matrix mat to the closest matrix in SO(3) using singular-value decomposition
* (see http://hades.mech.northwestern.edu/index.php/Modern_Robotics_Linear_Algebra_Review).
* This function is only appropriate for matrices close to SE(3).
*/
Eigen::MatrixXd ProjectToSE3(const Eigen::MatrixXd&);
/*
* Function: Returns the Frobenius norm to describe the distance of M from the SO(3) manifold
* Inputs:
* M: A 3x3 matrix
* Outputs:
* the distance from mat to the SO(3) manifold using the following
* method:
* If det(M) <= 0, return a large number.
* If det(M) > 0, return norm(M^T*M - I).
*/
double DistanceToSO3(const Eigen::Matrix3d&);
/*
* Function: Returns the Frobenius norm to describe the distance of mat from the SE(3) manifold
* Inputs:
* T: A 4x4 matrix
* Outputs:
* the distance from T to the SE(3) manifold using the following
* method:
* Compute the determinant of matR, the top 3x3 submatrix of T.
* If det(matR) <= 0, return a large number.
* If det(matR) > 0, replace the top 3x3 submatrix of mat with matR^T*matR,
* and set the first three entries of the fourth column of mat to zero. Then
* return norm(T - I).
*/
double DistanceToSE3(const Eigen::Matrix4d&);
/*
* Function: Returns true if M is close to or on the manifold SO(3)
* Inputs:
* M: A 3x3 matrix
* Outputs:
* true if M is very close to or in SO(3), false otherwise
*/
bool TestIfSO3(const Eigen::Matrix3d&);
/*
* Function: Returns true if T is close to or on the manifold SE(3)
* Inputs:
* M: A 4x4 matrix
* Outputs:
* true if T is very close to or in SE(3), false otherwise
*/
bool TestIfSE3(const Eigen::Matrix4d&);
/*
* Function: Computes inverse kinematics in the body frame for an open chain robot
* Inputs:
* Blist: The joint screw axes in the end-effector frame when the
* manipulator is at the home position, in the format of a
* matrix with axes as the columns
* M: The home configuration of the end-effector
* T: The desired end-effector configuration Tsd
* thetalist[in][out]: An initial guess and result output of joint angles that are close to
* satisfying Tsd
* emog: A small positive tolerance on the end-effector orientation
* error. The returned joint angles must give an end-effector
* orientation error less than eomg
* ev: A small positive tolerance on the end-effector linear position
* error. The returned joint angles must give an end-effector
* position error less than ev
* Outputs:
* success: A logical value where TRUE means that the function found
* a solution and FALSE means that it ran through the set
* number of maximum iterations without finding a solution
* within the tolerances eomg and ev.
* thetalist[in][out]: Joint angles that achieve T within the specified tolerances,
*/
bool IKinBody(const Eigen::MatrixXd&, const Eigen::MatrixXd&, const Eigen::MatrixXd&, Eigen::VectorXd&, double, double);
/*
* Function: Computes inverse kinematics in the space frame for an open chain robot
* Inputs:
* Slist: The joint screw axes in the space frame when the
* manipulator is at the home position, in the format of a
* matrix with axes as the columns
* M: The home configuration of the end-effector
* T: The desired end-effector configuration Tsd
* thetalist[in][out]: An initial guess and result output of joint angles that are close to
* satisfying Tsd
* emog: A small positive tolerance on the end-effector orientation
* error. The returned joint angles must give an end-effector
* orientation error less than eomg
* ev: A small positive tolerance on the end-effector linear position
* error. The returned joint angles must give an end-effector
* position error less than ev
* Outputs:
* success: A logical value where TRUE means that the function found
* a solution and FALSE means that it ran through the set
* number of maximum iterations without finding a solution
* within the tolerances eomg and ev.
* thetalist[in][out]: Joint angles that achieve T within the specified tolerances,
*/
bool IKinSpace(const Eigen::MatrixXd&, const Eigen::MatrixXd&, const Eigen::MatrixXd&, Eigen::VectorXd&, double, double);
/*
* Function: This function uses forward-backward Newton-Euler iterations to solve the
* equation:
* taulist = Mlist(thetalist) * ddthetalist + c(thetalist, dthetalist) ...
* + g(thetalist) + Jtr(thetalist) * Ftip
* Inputs:
* thetalist: n-vector of joint variables
* dthetalist: n-vector of joint rates
* ddthetalist: n-vector of joint accelerations
* g: Gravity vector g
* Ftip: Spatial force applied by the end-effector expressed in frame {n+1}
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* taulist: The n-vector of required joint forces/torques
*
*/
Eigen::VectorXd InverseDynamics(const Eigen::VectorXd&, const Eigen::VectorXd&, const Eigen::VectorXd&,
const Eigen::VectorXd&, const Eigen::VectorXd&, const std::vector<Eigen::MatrixXd>&,
const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: This function calls InverseDynamics with Ftip = 0, dthetalist = 0, and
* ddthetalist = 0. The purpose is to calculate one important term in the dynamics equation
* Inputs:
* thetalist: n-vector of joint variables
* g: Gravity vector g
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* grav: The 3-vector showing the effect force of gravity to the dynamics
*
*/
Eigen::VectorXd GravityForces(const Eigen::VectorXd&, const Eigen::VectorXd&,
const std::vector<Eigen::MatrixXd>&, const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: This function calls InverseDynamics n times, each time passing a
* ddthetalist vector with a single element equal to one and all other
* inputs set to zero. Each call of InverseDynamics generates a single
* column, and these columns are assembled to create the inertia matrix.
*
* Inputs:
* thetalist: n-vector of joint variables
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* M: The numerical inertia matrix M(thetalist) of an n-joint serial
* chain at the given configuration thetalist.
*/
Eigen::MatrixXd MassMatrix(const Eigen::VectorXd&,
const std::vector<Eigen::MatrixXd>&, const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: This function calls InverseDynamics with g = 0, Ftip = 0, and
* ddthetalist = 0.
*
* Inputs:
* thetalist: n-vector of joint variables
* dthetalist: A list of joint rates
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* c: The vector c(thetalist,dthetalist) of Coriolis and centripetal
* terms for a given thetalist and dthetalist.
*/
Eigen::VectorXd VelQuadraticForces(const Eigen::VectorXd&, const Eigen::VectorXd&,
const std::vector<Eigen::MatrixXd>&, const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: This function calls InverseDynamics with g = 0, dthetalist = 0, and
* ddthetalist = 0.
*
* Inputs:
* thetalist: n-vector of joint variables
* Ftip: Spatial force applied by the end-effector expressed in frame {n+1}
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* JTFtip: The joint forces and torques required only to create the
* end-effector force Ftip.
*/
Eigen::VectorXd EndEffectorForces(const Eigen::VectorXd&, const Eigen::VectorXd&,
const std::vector<Eigen::MatrixXd>&, const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: This function computes ddthetalist by solving:
* Mlist(thetalist) * ddthetalist = taulist - c(thetalist,dthetalist)
* - g(thetalist) - Jtr(thetalist) * Ftip
* Inputs:
* thetalist: n-vector of joint variables
* dthetalist: n-vector of joint rates
* taulist: An n-vector of joint forces/torques
* g: Gravity vector g
* Ftip: Spatial force applied by the end-effector expressed in frame {n+1}
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
*
* Outputs:
* ddthetalist: The resulting joint accelerations
*
*/
Eigen::VectorXd ForwardDynamics(const Eigen::VectorXd&, const Eigen::VectorXd&, const Eigen::VectorXd&,
const Eigen::VectorXd&, const Eigen::VectorXd&, const std::vector<Eigen::MatrixXd>&,
const std::vector<Eigen::MatrixXd>&, const Eigen::MatrixXd&);
/*
* Function: Compute the joint control torques at a particular time instant
* Inputs:
* thetalist: n-vector of joint variables
* dthetalist: n-vector of joint rates
* eint: n-vector of the time-integral of joint errors
* g: Gravity vector g
* Mlist: List of link frames {i} relative to {i-1} at the home position
* Glist: Spatial inertia matrices Gi of the links
* Slist: Screw axes Si of the joints in a space frame, in the format
* of a matrix with the screw axes as the columns.
* thetalistd: n-vector of reference joint variables
* dthetalistd: n-vector of reference joint rates
* ddthetalistd: n-vector of reference joint accelerations
* Kp: The feedback proportional gain (identical for each joint)
* Ki: The feedback integral gain (identical for each joint)
* Kd: The feedback derivative gain (identical for each joint)
*
* Outputs:
* tau_computed: The vector of joint forces/torques computed by the feedback
* linearizing controller at the current instant
*/
Eigen::VectorXd ComputedTorque(const Eigen::VectorXd&, const Eigen::VectorXd&, const Eigen::VectorXd&,
const Eigen::VectorXd&, const std::vector<Eigen::MatrixXd>&, const std::vector<Eigen::MatrixXd>&,
const Eigen::MatrixXd&, const Eigen::VectorXd&, const Eigen::VectorXd&, const Eigen::VectorXd&, double, double, double);
}