z1_sdk/include/unitree_arm_sdk/control/unitreeArm.h

230 lines
9.5 KiB
C++

#ifndef __UNITREEARM_H
#define __UNITREEARM_H
#include "unitree_arm_sdk/control/ctrlComponents.h"
namespace UNITREE_ARM {
class unitreeArm{
public:
unitreeArm(bool hasUnitreeGripper);
~unitreeArm();
/*
* Function: Change z1_ctrl state to fsm, wait until change complete
* Input: ArmFSMState
* Output: Whether swtich to fsm correctly
* Note: eaxmple: Only State_Passive could switch to State_LowCmd
*/
bool setFsm(ArmFSMState fsm);
/*
* Function: Move arm to home position
* wait until arrival home position, and then switch to State_JointCtrl
* Input: None
* Output: None
*/
void backToStart();
/*
* Function: Move arm to label position
* wait until arrival label position, and then switch to State_JointCtrl
* Input: label
* which should exist in z1_controller/config/saveArmStates.csv.
* The number of characters in label cannot be greater than 10.(char name[10])
* Output: None
*/
void labelRun(std::string label);
/*
* Function: Save current position as a label to saveArmStates.csv
* Switch to State_JointCtrl when done
* Input: label
* name to save, which shouldn't exist in z1_controller/config/saveArmStates.csv.
* The number of characters in label cannot be greater than 10.(char name[10])
* Output: None
*/
void labelSave(std::string label);
/*
* Function: Save current position as a label to saveArmStates.csv
* Switch to State_JointCtrl when done
* Input: label
* name to save, which shouldn't exist in z1_controller/config/saveArmStates.csv.
* The number of characters in label cannot be greater than 10.(char name[10])
* Output: None
*/
void teach(std::string label);
/*
* Function: Switch to State_Teach
* Input: label
* Teach trajectory will be save as Traj_label.csv in directory z1_controller/config/
* The number of characters in label cannot be greater than 10.(char name[10])
* Output: None
*/
void teachRepeat(std::string label);
/*
* Function: Calibrate the motor, make current position as home position
* Input: None
* Output: None
*/
void calibration();
/*
* Function: Move the robot in a joint path
* Input: posture: target position, (roll pitch yaw x y z), unit: meter
* maxSpeed: the maximum joint speed when robot is moving, unit: radian/s
* range:[0, pi]
* Output: None
*/
bool MoveJ(Vec6 posture, double maxSpeed);
/*
* Function: Move the robot in a joint path, and control the gripper at the same time
* Input: posture: target position, (roll pitch yaw x y z), unit: meter
* gripperPos: target angular
* uint: radian
* range:[-pi/2, 0]
* maxSpeed: the maximum joint speed when robot is moving
* unit: radian/s
* range:[0, pi]
* Output: whether posture has inverse kinematics
*/
bool MoveJ(Vec6 posture, double gripperPos, double maxSpeed);
/*
* Function: Move the robot in a linear path
* Input: posture: target position, (roll pitch yaw x y z), unit: meter
* maxSpeed: the maximum joint speed when robot is moving, unit: m/s
* Output: whether posture has inverse kinematics
*/
bool MoveL(Vec6 posture, double maxSpeed);
/*
* Function: Move the robot in a linear path, and control the gripper at the same time
* Input: posture: target position, (roll pitch yaw x y z), unit: meter
* gripperPos: target angular, uint: radian
* range:[-pi/2, 0]
* maxSpeed: the maximum joint speed when robot is moving, unit: m/s
* Output: whether posture has inverse kinematics
*/
bool MoveL(Vec6 posture, double gripperPos, double maxSpeed);
/*
* Function: Move the robot in a circular path
* Input: middle posture: determine the shape of the circular path
* endPosture: target position, (roll pitch yaw x y z), unit: meter
* maxSpeed: the maximum joint speed when robot is moving, unit: m/s
* Output: whether posture has inverse kinematics
*/
bool MoveC(Vec6 middlePosutre, Vec6 endPosture, double maxSpeed);
/*
* Function: Move the robot in a circular path, and control the gripper at the same time
* Input: middle posture: determine the shape of the circular path
* endPosture: target position, (roll pitch yaw x y z), unit: meter
* gripperPos: target angular, uint: radian
* range:[-pi/2, 0]
* maxSpeed: the maximum joint speed when robot is moving, unit: m/s
* Output: whether posture has inverse kinematics
*/
bool MoveC(Vec6 middlePosutre, Vec6 endPosture, double gripperPos, double maxSpeed);
/*
* Function: Control robot with q&qd command in joint space or posture command in cartesian space
* Input: fsm: ArmFSMState::JOINTCTRL or ArmFSMState::CARTESIAN
* Output: whether posture has inverse kinematics
* Description: 1. ArmFSMState::JOINTCTRL,
* if you run function startTrack(ArmFSMState::JOINTCTRL),
* firstly, the following parameters will be set at the first time:
* q : <---- lowstate->getQ()
* qd: <---- lowstate->getQd()
* gripperQ: <---- lowstate->getGripperQ()
* gripperQd: <---- lowstate->getGripperQd()
* then you can change these parameters to control robot
* 2. ArmFSMState::CARTESIAN,
* if you run function startTrack(ArmFSMState::CARTESIAN),
* firstly, the following parameters will be set at the first time:
* twist.setZero()
* then you can change it to control robot, [Based on the object coordinate system]
*/
void startTrack(ArmFSMState fsm);
/*
* Function: send udp message to z1_ctrl and receive udp message from it
* Input: None
* Output: None
* Description: sendRecvThread will run sendRecv() at a frequency of 500Hz
* ctrlcomp.sendRecv() is called in unitreeArm.sendRecv(),
* and set command parameters in unitreeArm to lowcmd automatically
* If you want to control robot under JOINTCTRL, CARTESIAN or LOWCMD,
* instead of MovecJ, MoveL, MoveC, and so on
* it is recommended to create your own thread to process command parameters
* (see stratTrack() description)
* and execute sendRecv() at the end of thread
*/
void sendRecv();
/*
* Function: whether to wait for the command to finish
* Input: true or false
* Output: None
* Description: For example, MoveJ will send a trajectory command to z1_controller and then
* run usleep() to wait for the trajectory execution to complete.
* If set [wait] to false, MoveJ will send command only and user should judge
* for youself whether the command is complete.
* Method 1: if(_ctrlComp->recvState.state != fsm)
* After trajectory complete, the FSM will switch to ArmFSMState::JOINTCTRL
* automatically
* Method 2: if((lowState->endPosture - endPostureGoal).norm() < error)
* Check whether current posture reaches the target
* Related functions:
* MoveJ(), MoveL(), MoveC(), backToStart(), labelRun(), teachRepeat()
*/
void setWait(bool Y_N);
/*
* Function: set q & qd command automatically by input parameters
* Input: directions: movement directions [include gripper], range:[-1,1]
* J1, J2, J3, J4, J5, J6, gripper
* jointSpeed: range: [0, pi]
* Output: None
* Description: The function is typically used to control the robot by keyboard or joystick
* When a key is pressed, the directions[i] sets to 1 or -1, and the function will
* automatically execute the following command:
* qd = directions * jointSpeed
* q += qd * _ctrlComp->dt
* if directions == 0, the robot stop moving
*/
void jointCtrlCmd(Vec7 directions, double jointSpeed);
/*
* Function: set spatial velocity command automatically by input parameters
Based on the object coordinate system
* Input: directions: movement directions [include gripper], range:[-1,1]
* raw, pitch, yaw, x, y, z, gripper
* oriSpeed: range: [0, 0.6]
* posSpeed: range: [0, 0.3]
* gripper joint speed is set to 1.0
* Output: None
* Description: The function is typically used to control the robot by keyboard or joystick
* When a key is pressed, the directions[i] is set to 1 or -1, and the function will
* automatically execute the following command:
* postureDelta = directions * speed
* postureGoal = postureDelta + posturePast
* Tgoal = postureToHomo(postureGoal)
* Tpast = postureToHomo(posturePast)
* omega = so3ToVec(MatrixLog3( Tpast.Rot.Transpose * Tgoal.Rot ))
* v = Tdelta.t
* twist = (omega, v)
* if directions == 0, the robot stop moving
*/
void cartesianCtrlCmd(Vec7 directions, double oriSpeed, double posSpeed);
//command parameters
Vec6 q, qd, tau;
Vec6 twist;//spatial velocity: [omega, v]'
double gripperQ, gripperW, gripperTau;
Vec7 directions;
LoopFunc *sendRecvThread;
LowlevelCmd *lowcmd;//same as _ctrlComp->lowcmd
LowlevelState *lowstate;//same as _ctrlComp->lowstate
CtrlComponents *_ctrlComp;
private:
bool _isWait = true;
Vec6 _qPast;
Vec6 _endPosturePast, _endPostureDelta, _endPostureGoal;
};
}
#endif