z1_sdk/include/unitree_arm_sdk/model/ArmModel.h

172 lines
6.4 KiB
C++

#ifndef ARMMODEL_H
#define ARMMODEL_H
#include <vector>
#include "unitree_arm_sdk/thirdparty/robotics.h"
#include "unitree_arm_sdk/thirdparty/quadProgpp/QuadProg++.hh"
namespace UNITREE_ARM {
using namespace robo;
class ArmModel{
public:
ArmModel(Vec3 endPosLocal, double endEffectorMass, Vec3 endEffectorCom, Mat3 endEffectorInertia);
~ArmModel(){};
/*
* Function: compute end effector frame (used for current spatial position calculation)
* Inputs: q: current joint angles
* index: it can set as 0,1,...,6
* if index == 6, then compute end efftor frame,
* else compute joint_i frame
* Returns: Transfomation matrix representing the end-effector frame when the joints are
* at the specified coordinates
*/
HomoMat forwardKinematics(Vec6 q, int index = 6);
/*
* Function: Computes inverse kinematics in the space frame with the irerative approach
* Inputs: TDes: The desired end-effector configuration
* qPast: An initial guess and result output of joint angles that are close to
* satisfying TDes
* checkInWorkSpace: whether q_result shoule be around qPast
* eaxmple: there is a postion defined by q_temp which is within the C-space
* if qPast == Vec6::Zero(),
* the function will return false while checkInWorkSpace is false,
* and return true while checkInWorkSpace is true.
* Normally, you can use qPast = Vec6::Zero() and checkInWorkSpace == true
* to check whether q_temp has inverse kinematics sloutions
* Returns: success: A logical value where TRUE means that the function found
* a solution and FALSE means that it ran through the set
* number of maximum iterations without finding a solution
* q_result: Joint angles that achieve T within the specified tolerances,
*/
virtual bool inverseKinematics(HomoMat TDes, Vec6 qPast, Eigen::Ref<Vec6> q_result, bool checkInWorkSpace = false);
/*
* Function: Gives the space Jacobian
* Inputs: q: current joint angles
* Returns: 6x6 Spatial Jacobian
*/
Mat6 CalcJacobian(Vec6 q);
/*
* Function: This function uses forward-backward Newton-Euler iterations to caculate inverse dynamics
* Inputs: q: joint angles
* qd: joint velocities
* qdd: joint accelerations
* Ftip: Spatial force applied by the end-effector [rpyxyz]
* Returns: required joint forces/torques
*/
Vec6 inverseDynamics(Vec6 q, Vec6 qd, Vec6 qdd, Vec6 Ftip);
virtual void solveQP(Vec6 twist, Vec6 qPast, Eigen::Ref<Vec6> qd_result, double dt) = 0;
virtual bool checkInSingularity(Vec6 q) = 0;
/*
* Function: Limit q & qd inputs to valid values
* Inputs: q: set in range[_jointQMin, _jointQMax]
* qd: set in range[-_jointSpeedMax, _jointSpeedMax]
* Returns: None
*/
void jointProtect(Eigen::Ref<Vec6> q, Eigen::Ref<Vec6> qd);
std::vector<double> getJointQMax() {return _jointQMax;}
std::vector<double> getJointQMin() {return _jointQMin;}
std::vector<double> getJointSpeedMax() {return _jointSpeedMax;}
/*
* Function: The load is applied to the end joint in equal proportion
and caculates the correspoding dynamic parameters
* Inputs: load: unit:kg, set in z1_controller/config/config.xml
* Returns: None
*/
void addLoad(double load);
const size_t dof = 6;
protected:
bool _checkAngle(Vec6 );
void _buildModel();
// initial parameters
HomoMat _M; //End posture at the home position
std::vector<HomoMat> _Mlist;// List of link frames {i} relative to {i-1} at the home position
Vec3 _gravity;
Mat6 _Slist;// spatial twist at home position
std::vector<Mat6> _Glist;
std::vector<Vec3> _jointAxis;// omega
std::vector<Vec3> _jointPos;// p_0
std::vector<double> _jointQMax;
std::vector<double> _jointQMin;
std::vector<double> _jointSpeedMax;
Vec3 _endPosLocal; // based on mount postion
Vec3 _endMountPosGlobal;
std::vector<Vec3> _linkPosLocal;
std::vector<double> _disJoint;//distance between joint
std::vector<double> _linkMass;
std::vector<Vec3> _linkCom; // center of mass
std::vector<Mat3> _linkInertia;
double _endEffectorMass;
Vec3 _endEffectorCom;
Mat3 _endEffectorInertia;
double _load;
};
class Z1Model : public ArmModel{
public:
Z1Model(Vec3 endPosLocal = Vec3::Zero(), double endEffectorMass = 0.0,
Vec3 endEffectorCom = Vec3::Zero(), Mat3 endEffectorInertia = Mat3::Zero());
~Z1Model(){};
/*
* Function: Check whether joint1 and joint5 is coaxial
* x5^2 + y5^2 < 0.1^2
* Inputs: q: current joint variables
* Returns: bool
*/
bool checkInSingularity(Vec6 q);
/*
* Function: Computes inverse kinematics in the space frame with the analytical approach
* Inputs: TDes: The desired end-effector configuration
* qPast: An initial guess and result output of joint angles that are close to
* satisfying TDes
* checkInWorkSpace: whether q_result shoule be around qPast
* eaxmple: there is a postion defined by q_temp which is within the C-space
* if qPast == Vec6::Zero(),
* the function will return false while checkInWorkSpace is false,
* and return true while checkInWorkSpace is true.
* Normally, you can use qPast = Vec6::Zero() and checkInWorkSpace = true
* to check whether q_temp has inverse kinematics sloutions
* Returns: success: A logical value where TRUE means that the function found
* a solution and FALSE means that it ran through the set
* number of maximum iterations without finding a solution
* q_result: Joint angles that achieve T within the specified tolerances,
*/
bool inverseKinematics(HomoMat TDes, Vec6 qPast, Eigen::Ref<Vec6> q_result, bool checkInWorkSpace = false);
/*
* Function: The function use quadprog++ to slove equation: qd = J.inverse() * twist, even if J has no inverse
* Inputs: twist: spatial velocity [R_dot, p_dot]
* qPast: current joint angles
* dt : compute period
* Returns: qd_result: joint velocity that are corresponding to twist
*/
void solveQP(Vec6 twist, Vec6 qPast, Eigen::Ref<Vec6> qd_result, double dt);
private:
void setParam_V3_6();
double _theta2Bias;
};
}
#endif