CodeReview/backend/app/services/llm/adapters/openai_adapter.py

94 lines
3.4 KiB
Python
Raw Normal View History

"""
OpenAI适配器 (支持GPT系列和OpenAI兼容API)
"""
from typing import Dict, Any
from ..base_adapter import BaseLLMAdapter
from ..types import LLMRequest, LLMResponse, LLMUsage, DEFAULT_BASE_URLS, LLMProvider
class OpenAIAdapter(BaseLLMAdapter):
"""OpenAI适配器"""
@property
def base_url(self) -> str:
return self.config.base_url or DEFAULT_BASE_URLS.get(LLMProvider.OPENAI, "https://api.openai.com/v1")
async def complete(self, request: LLMRequest) -> LLMResponse:
try:
await self.validate_config()
return await self.retry(lambda: self._send_request(request))
except Exception as error:
self.handle_error(error, "OpenAI API调用失败")
async def _send_request(self, request: LLMRequest) -> LLMResponse:
# 构建请求头
headers = {
"Authorization": f"Bearer {self.config.api_key}",
}
# 检测是否为推理模型o1/o3系列
model_name = self.config.model.lower()
is_reasoning_model = "o1" in model_name or "o3" in model_name
# 构建请求体
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
request_body: Dict[str, Any] = {
"model": self.config.model,
"messages": messages,
"temperature": request.temperature if request.temperature is not None else self.config.temperature,
"top_p": request.top_p if request.top_p is not None else self.config.top_p,
"frequency_penalty": self.config.frequency_penalty,
"presence_penalty": self.config.presence_penalty,
}
# 推理模型使用max_completion_tokens其他模型使用max_tokens
max_tokens = request.max_tokens if request.max_tokens is not None else self.config.max_tokens
if is_reasoning_model:
request_body["max_completion_tokens"] = max_tokens
else:
request_body["max_tokens"] = max_tokens
url = f"{self.base_url.rstrip('/')}/chat/completions"
response = await self.client.post(
url,
headers=self.build_headers(headers),
json=request_body
)
if response.status_code != 200:
error_data = response.json() if response.text else {}
error_msg = error_data.get("error", {}).get("message", f"HTTP {response.status_code}")
raise Exception(f"{error_msg}")
data = response.json()
choice = data.get("choices", [{}])[0]
if not choice:
raise Exception("API响应格式异常: 缺少choices字段")
usage = None
if "usage" in data:
usage = LLMUsage(
prompt_tokens=data["usage"].get("prompt_tokens", 0),
completion_tokens=data["usage"].get("completion_tokens", 0),
total_tokens=data["usage"].get("total_tokens", 0)
)
return LLMResponse(
content=choice.get("message", {}).get("content", ""),
model=data.get("model"),
usage=usage,
finish_reason=choice.get("finish_reason")
)
async def validate_config(self) -> bool:
await super().validate_config()
if not self.config.model:
raise Exception("未指定OpenAI模型")
return True