CodeReview/backend/app/services/llm/adapters/baidu_adapter.py

150 lines
5.1 KiB
Python
Raw Normal View History

"""
百度文心一言适配器
"""
import httpx
from typing import Optional
from ..base_adapter import BaseLLMAdapter
from ..types import LLMConfig, LLMRequest, LLMResponse, LLMError, LLMProvider, LLMUsage
class BaiduAdapter(BaseLLMAdapter):
"""百度文心一言API适配器"""
# 模型名称到API端点的映射
MODEL_ENDPOINTS = {
"ERNIE-4.0": "completions_pro",
"ERNIE-3.5-8K": "completions",
"ERNIE-3.5-128K": "ernie-3.5-128k",
"ERNIE-Speed": "ernie_speed",
"ERNIE-Lite": "ernie-lite-8k",
}
def __init__(self, config: LLMConfig):
super().__init__(config)
self._access_token: Optional[str] = None
self._base_url = config.base_url or "https://aip.baidubce.com"
async def _get_access_token(self) -> str:
"""获取百度API的access_token
注意百度API使用API Key和Secret Key来获取access_token
这里假设api_key格式为: "api_key:secret_key"
"""
if self._access_token:
return self._access_token
# 解析API Key和Secret Key
if ":" not in self.config.api_key:
raise LLMError(
"百度API需要同时提供API Key和Secret Key格式api_key:secret_key",
provider="baidu"
)
api_key, secret_key = self.config.api_key.split(":", 1)
url = f"{self._base_url}/oauth/2.0/token"
params = {
"grant_type": "client_credentials",
"client_id": api_key,
"client_secret": secret_key,
}
async with httpx.AsyncClient(timeout=30) as client:
response = await client.post(url, params=params)
if response.status_code != 200:
raise LLMError(
f"获取百度access_token失败: {response.text}",
provider="baidu",
status_code=response.status_code
)
data = response.json()
self._access_token = data.get("access_token")
if not self._access_token:
raise LLMError(
f"百度API返回的access_token为空: {response.text}",
provider="baidu"
)
return self._access_token
async def complete(self, request: LLMRequest) -> LLMResponse:
"""执行实际的API调用"""
try:
await self.validate_config()
return await self.retry(lambda: self._send_request(request))
except Exception as error:
self.handle_error(error, "百度文心一言 API调用失败")
async def _send_request(self, request: LLMRequest) -> LLMResponse:
"""发送请求"""
access_token = await self._get_access_token()
# 获取模型对应的API端点
model = self.config.model or "ERNIE-3.5-8K"
endpoint = self.MODEL_ENDPOINTS.get(model, "completions")
url = f"{self._base_url}/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/{endpoint}?access_token={access_token}"
messages = [{"role": m.role, "content": m.content} for m in request.messages]
payload = {
"messages": messages,
"temperature": request.temperature if request.temperature is not None else self.config.temperature,
"top_p": request.top_p if request.top_p is not None else self.config.top_p,
}
if request.max_tokens or self.config.max_tokens:
payload["max_output_tokens"] = request.max_tokens or self.config.max_tokens
response = await self.client.post(
url,
headers=self.build_headers(),
json=payload
)
if response.status_code != 200:
error_data = response.json() if response.text else {}
error_msg = error_data.get("error_msg", f"HTTP {response.status_code}")
raise Exception(f"{error_msg}")
data = response.json()
if "error_code" in data:
raise Exception(f"百度API错误: {data.get('error_msg', '未知错误')}")
usage = None
if "usage" in data:
usage = LLMUsage(
prompt_tokens=data["usage"].get("prompt_tokens", 0),
completion_tokens=data["usage"].get("completion_tokens", 0),
total_tokens=data["usage"].get("total_tokens", 0)
)
return LLMResponse(
content=data.get("result", ""),
model=model,
usage=usage,
finish_reason=data.get("finish_reason")
)
async def validate_config(self) -> bool:
"""验证配置是否有效"""
if not self.config.api_key:
raise LLMError(
"API Key未配置",
provider=LLMProvider.BAIDU
)
if ":" not in self.config.api_key:
raise LLMError(
"百度API需要同时提供API Key和Secret Key格式api_key:secret_key",
provider=LLMProvider.BAIDU
)
return True