docs: 添加中文README文件并更新英文README

添加简体中文版README_CN.md文件,并同步更新英文版README.md内容
删除旧的README_EN.md文件,统一使用README.md作为英文文档
This commit is contained in:
lintsinghua 2025-12-22 00:39:38 +08:00
parent c7ac518646
commit 11a5913652
3 changed files with 628 additions and 628 deletions

375
README.md
View File

@ -1,7 +1,9 @@
# DeepAudit - 人人拥有的 AI 审计战队,让漏洞挖掘触手可及 🦸‍♂️
# DeepAudit - Your AI Security Audit Team, Making Vulnerability Discovery Accessible
> Making code vulnerability discovery as easy as breathing, even beginners can find bugs
<p align="center">
<strong>简体中文</strong> | <a href="README_EN.md">English</a>
<a href="README_CN.md">简体中文</a> | <strong>English</strong>
</p>
<div style="width: 100%; max-width: 600px; margin: 0 auto;">
@ -34,217 +36,192 @@
## 📸 界面预览
## Screenshots
<div align="center">
### 🤖 Agent 审计入口
### Agent Audit Entry
<img src="frontend/public/images/README-show/Agent审计入口首页.png" alt="Agent审计入口" width="90%">
<img src="frontend/public/images/README-show/Agent审计入口首页.png" alt="Agent Audit Entry" width="90%">
*首页快速进入 Multi-Agent 深度审计*
*Quick access to Multi-Agent deep audit from homepage*
</div>
<table>
<tr>
<td width="50%" align="center">
<strong>📋 审计流日志</strong><br/><br/>
<img src="frontend/public/images/README-show/审计流日志.png" alt="审计流日志" width="95%"><br/>
<em>实时查看 Agent 思考与执行过程</em>
<strong>Audit Flow Logs</strong><br/><br/>
<img src="frontend/public/images/README-show/审计流日志.png" alt="Audit Flow Logs" width="95%"><br/>
<em>Real-time view of Agent thinking and execution process</em>
</td>
<td width="50%" align="center">
<strong>🎛️ 智能仪表盘</strong><br/><br/>
<img src="frontend/public/images/README-show/仪表盘.png" alt="仪表盘" width="95%"><br/>
<em>一眼掌握项目安全态势</em>
<strong>Smart Dashboard</strong><br/><br/>
<img src="frontend/public/images/README-show/仪表盘.png" alt="Dashboard" width="95%"><br/>
<em>Grasp project security posture at a glance</em>
</td>
</tr>
<tr>
<td width="50%" align="center">
<strong>⚡ 即时分析</strong><br/><br/>
<img src="frontend/public/images/README-show/即时分析.png" alt="即时分析" width="95%"><br/>
<em>粘贴代码 / 上传文件,秒出结果</em>
<strong>Instant Analysis</strong><br/><br/>
<img src="frontend/public/images/README-show/即时分析.png" alt="Instant Analysis" width="95%"><br/>
<em>Paste code / upload files, get results in seconds</em>
</td>
<td width="50%" align="center">
<strong>🗂️ 项目管理</strong><br/><br/>
<img src="frontend/public/images/README-show/项目管理.png" alt="项目管理" width="95%"><br/>
<em>GitHub/GitLab 导入,多项目协同管理</em>
<strong>Project Management</strong><br/><br/>
<img src="frontend/public/images/README-show/项目管理.png" alt="Project Management" width="95%"><br/>
<em>GitHub/GitLab import, multi-project collaboration</em>
</td>
</tr>
</table>
<div align="center">
### 📊 专业报告
### Professional Reports
<img src="frontend/public/images/README-show/审计报告示例.png" alt="审计报告" width="90%">
<img src="frontend/public/images/README-show/审计报告示例.png" alt="Audit Report" width="90%">
*一键导出 PDF / Markdown / JSON*图中为快速模式非Agent模式报告
*One-click export to PDF / Markdown / JSON* (Quick mode shown, not Agent mode report)
👉 [查看Agent审计完整报告示例](https://lintsinghua.github.io/)
[View Full Agent Audit Report Example](https://lintsinghua.github.io/)
</div>
---
## ⚡ 项目概述
## Overview
**DeepAudit** 是一个基于 **Multi-Agent 协作架构**的下一代代码安全审计平台。它不仅仅是一个静态扫描工具,而是模拟安全专家的思维模式,通过多个智能体(**Orchestrator**, **Recon**, **Analysis**, **Verification**)的自主协作,实现对代码的深度理解、漏洞挖掘和 **自动化沙箱 PoC 验证**
**DeepAudit** is a next-generation code security audit platform based on **Multi-Agent collaborative architecture**. It's not just a static scanning tool, but simulates the thinking patterns of security experts through autonomous collaboration of multiple agents (**Orchestrator**, **Recon**, **Analysis**, **Verification**), achieving deep code understanding, vulnerability discovery, and **automated sandbox PoC verification**.
我们致力于解决传统 SAST 工具的三大痛点:
- **误报率高** — 缺乏语义理解,大量误报消耗人力
- **业务逻辑盲点** — 无法理解跨文件调用和复杂逻辑
- **缺乏验证手段** — 不知道漏洞是否真实可利用
We are committed to solving three major pain points of traditional SAST tools:
- **High false positive rate** — Lack of semantic understanding, massive false positives consume manpower
- **Business logic blind spots** — Cannot understand cross-file calls and complex logic
- **Lack of verification methods** — Don't know if vulnerabilities are actually exploitable
用户只需导入项目DeepAudit 便全自动开始工作:识别技术栈 → 分析潜在风险 → 生成脚本 → 沙箱验证 → 生成报告,最终输出一份专业审计报告。
Users only need to import a project, and DeepAudit automatically starts working: identify tech stack → analyze potential risks → generate scripts → sandbox verification → generate report, ultimately outputting a professional audit report.
> **核心理念**: 让 AI 像黑客一样攻击,像专家一样防御。
> **Core Philosophy**: Let AI attack like a hacker, defend like an expert.
## 💡 为什么选择 DeepAudit
## Why Choose DeepAudit?
<div align="center">
| 😫 传统审计的痛点 | 💡 DeepAudit 解决方案 |
| Traditional Audit Pain Points | DeepAudit Solutions |
| :--- | :--- |
| **人工审计效率低**<br>跨不上 CI/CD 代码迭代速度,拖慢发布流程 | **🤖 Multi-Agent 自主审计**<br>AI 自动编排审计策略,全天候自动化执行 |
| **传统工具误报多**<br>缺乏语义理解,每天花费大量时间清洗噪音 | **🧠 RAG 知识库增强**<br>结合代码语义与上下文,大幅降低误报率 |
| **数据隐私担忧**<br>担心核心源码泄露给云端 AI无法满足合规要求 | **🔒 支持 Ollama 本地部署**<br>数据不出内网,支持 Llama3/DeepSeek 等本地模型 |
| **无法确认真实性**<br>外包项目漏洞多,不知道哪些漏洞真实可被利用 | **💥 沙箱 PoC 验证**<br>自动生成并执行攻击脚本,确认漏洞真实危害 |
| **Low manual audit efficiency**<br>Can't keep up with CI/CD iteration speed, slowing release process | **Multi-Agent Autonomous Audit**<br>AI automatically orchestrates audit strategies, 24/7 automated execution |
| **Too many false positives**<br>Lack of semantic understanding, spending lots of time cleaning noise daily | **RAG Knowledge Enhancement**<br>Combining code semantics with context, significantly reducing false positives |
| **Data privacy concerns**<br>Worried about core source code leaking to cloud AI, can't meet compliance requirements | **Ollama Local Deployment Support**<br>Data stays on-premises, supports Llama3/DeepSeek and other local models |
| **Can't confirm authenticity**<br>Outsourced projects have many vulnerabilities, don't know which are truly exploitable | **Sandbox PoC Verification**<br>Automatically generate and execute attack scripts, confirm real vulnerability impact |
</div>
---
## 🏗️ 系统架构
## System Architecture
### 整体架构图
### Architecture Diagram
DeepAudit 采用微服务架构,核心由 Multi-Agent 引擎驱动。
DeepAudit adopts microservices architecture, driven by the Multi-Agent engine at its core.
<div align="center">
<img src="frontend/public/images/README-show/架构图.png" alt="DeepAudit 架构图" width="90%">
<img src="frontend/public/images/README-show/架构图.png" alt="DeepAudit Architecture" width="90%">
</div>
### 🔄 审计工作流
### Audit Workflow
| 步骤 | 阶段 | 负责 Agent | 主要动作 |
| Step | Phase | Responsible Agent | Main Actions |
|:---:|:---:|:---:|:---|
| 1 | **策略规划** | **Orchestrator** | 接收审计任务,分析项目类型,制定审计计划,下发任务给子 Agent |
| 2 | **信息收集** | **Recon Agent** | 扫描项目结构,识别框架/库/API提取攻击面Entry Points |
| 3 | **漏洞挖掘** | **Analysis Agent** | 结合 RAG 知识库与 AST 分析,深度审查代码,发现潜在漏洞 |
| 4 | **PoC 验证** | **Verification Agent** | **(关键)** 编写 PoC 脚本,在 Docker 沙箱中执行。如失败则自我修正重试 |
| 5 | **报告生成** | **Orchestrator** | 汇总所有发现,剔除被验证为误报的漏洞,生成最终报告 |
| 1 | **Strategy Planning** | **Orchestrator** | Receive audit task, analyze project type, formulate audit plan, dispatch tasks to sub-agents |
| 2 | **Information Gathering** | **Recon Agent** | Scan project structure, identify frameworks/libraries/APIs, extract attack surface (Entry Points) |
| 3 | **Vulnerability Discovery** | **Analysis Agent** | Combine RAG knowledge base with AST analysis, deep code review, discover potential vulnerabilities |
| 4 | **PoC Verification** | **Verification Agent** | **(Critical)** Write PoC scripts, execute in Docker sandbox. Self-correct and retry if failed |
| 5 | **Report Generation** | **Orchestrator** | Aggregate all findings, filter out verified false positives, generate final report |
### 📂 项目代码结构
### Project Structure
```text
DeepAudit/
├── backend/ # Python FastAPI 后端
├── backend/ # Python FastAPI Backend
│ ├── app/
│ │ ├── agents/ # Multi-Agent 核心逻辑
│ │ │ ├── orchestrator.py # 总指挥:任务编排
│ │ │ ├── recon.py # 侦察兵:资产识别
│ │ │ ├── analysis.py # 分析师:漏洞挖掘
│ │ │ └── verification.py # 验证者:沙箱 PoC
│ │ ├── core/ # 核心配置与沙箱接口
│ │ ├── models/ # 数据库模型
│ │ └── services/ # RAG, LLM 服务封装
│ └── tests/ # 单元测试
├── frontend/ # React + TypeScript 前端
│ │ ├── agents/ # Multi-Agent Core Logic
│ │ │ ├── orchestrator.py # Commander: Task Orchestration
│ │ │ ├── recon.py # Scout: Asset Identification
│ │ │ ├── analysis.py # Analyst: Vulnerability Discovery
│ │ │ └── verification.py # Verifier: Sandbox PoC
│ │ ├── core/ # Core Config & Sandbox Interface
│ │ ├── models/ # Database Models
│ │ └── services/ # RAG, LLM Service Wrappers
│ └── tests/ # Unit Tests
├── frontend/ # React + TypeScript Frontend
│ ├── src/
│ │ ├── components/ # UI 组件库
│ │ ├── pages/ # 页面路由
│ │ └── stores/ # Zustand 状态管理
├── docker/ # Docker 部署配置
│ ├── sandbox/ # 安全沙箱镜像构建
│ └── postgres/ # 数据库初始化
└── docs/ # 详细文档
│ │ ├── components/ # UI Component Library
│ │ ├── pages/ # Page Routes
│ │ └── stores/ # Zustand State Management
├── docker/ # Docker Deployment Config
│ ├── sandbox/ # Security Sandbox Image Build
│ └── postgres/ # Database Initialization
└── docs/ # Detailed Documentation
```
---
## 🚀 快速开始
## Quick Start
### 方式一:一行命令部署(推荐)
### Option 1: One-Line Deployment (Recommended)
使用预构建的 Docker 镜像,无需克隆代码,一行命令即可启动:
Using pre-built Docker images, no need to clone code, start with one command:
```bash
curl -fsSL https://raw.githubusercontent.com/lintsinghua/DeepAudit/v3.0.0/docker-compose.prod.yml | docker compose -f - up -d
```
## 🇨🇳 国内加速部署(作者亲测非常无敌之快)
使用南京大学镜像站加速拉取 Docker 镜像(将 `ghcr.io` 替换为 `ghcr.nju.edu.cn`
```bash
# 国内加速版 - 使用南京大学 GHCR 镜像站
curl -fsSL https://raw.githubusercontent.com/lintsinghua/DeepAudit/v3.0.0/docker-compose.prod.cn.yml | docker compose -f - up -d
```
<details>
<summary>手动拉取镜像(如需单独拉取)(点击展开)</summary>
```bash
# 前端镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-frontend:latest
# 后端镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-backend:latest
# 沙箱镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-sandbox:latest
```
</details>
> 💡 镜像源由 [南京大学开源镜像站](https://mirrors.nju.edu.cn/) 提供支持
> 🎉 **启动成功!** 访问 http://localhost:3000 开始体验。
> **Success!** Visit http://localhost:3000 to start exploring.
---
### 方式二:克隆代码部署
### Option 2: Clone and Deploy
适合需要自定义配置或二次开发的用户:
Suitable for users who need custom configuration or secondary development:
```bash
# 1. 克隆项目
# 1. Clone project
git clone https://github.com/lintsinghua/DeepAudit.git && cd DeepAudit
# 2. 配置环境变量
# 2. Configure environment variables
cp backend/env.example backend/.env
# 编辑 backend/.env 填入你的 LLM API Key
# Edit backend/.env and fill in your LLM API Key
# 3. 一键启动
# 3. One-click start
docker compose up -d
```
> 首次启动会自动构建沙箱镜像,可能需要几分钟。
> First startup will automatically build the sandbox image, which may take a few minutes.
---
## 🔧 源码开发指南
## Development Guide
适合开发者进行二次开发调试。
For developers doing secondary development and debugging.
### 环境要求
### Requirements
- Python 3.11+
- Node.js 20+
- PostgreSQL 15+
- Docker (用于沙箱)
- Docker (for sandbox)
### 1. 后端启动
### 1. Backend Setup
```bash
cd backend
# 使用 uv 管理环境(推荐)
# Use uv for environment management (recommended)
uv sync
source .venv/bin/activate
# 启动 API 服务
# Start API service
uvicorn app.main:app --reload
```
### 2. 前端启动
### 2. Frontend Setup
```bash
cd frontend
@ -252,63 +229,59 @@ pnpm install
pnpm dev
```
### 3. 沙箱环境
### 3. Sandbox Environment
开发模式下需要本地 Docker 拉取沙箱镜像:
Development mode requires pulling the sandbox image locally:
```bash
# 标准拉取
docker pull ghcr.io/lintsinghua/deepaudit-sandbox:latest
# 国内加速(南京大学镜像站)
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-sandbox:latest
```
---
## 🤖 Multi-Agent 智能审计
## Multi-Agent Intelligent Audit
### 支持的漏洞类型
### Supported Vulnerability Types
<table>
<tr>
<td>
| 漏洞类型 | 描述 |
| Vulnerability Type | Description |
|---------|------|
| `sql_injection` | SQL 注入 |
| `xss` | 跨站脚本攻击 |
| `command_injection` | 命令注入 |
| `path_traversal` | 路径遍历 |
| `ssrf` | 服务端请求伪造 |
| `xxe` | XML 外部实体注入 |
| `sql_injection` | SQL Injection |
| `xss` | Cross-Site Scripting |
| `command_injection` | Command Injection |
| `path_traversal` | Path Traversal |
| `ssrf` | Server-Side Request Forgery |
| `xxe` | XML External Entity Injection |
</td>
<td>
| 漏洞类型 | 描述 |
| Vulnerability Type | Description |
|---------|------|
| `insecure_deserialization` | 不安全反序列化 |
| `hardcoded_secret` | 硬编码密钥 |
| `weak_crypto` | 弱加密算法 |
| `authentication_bypass` | 认证绕过 |
| `authorization_bypass` | 授权绕过 |
| `idor` | 不安全直接对象引用 |
| `insecure_deserialization` | Insecure Deserialization |
| `hardcoded_secret` | Hardcoded Secrets |
| `weak_crypto` | Weak Cryptography |
| `authentication_bypass` | Authentication Bypass |
| `authorization_bypass` | Authorization Bypass |
| `idor` | Insecure Direct Object Reference |
</td>
</tr>
</table>
> 📖 详细文档请查看 **[Agent 审计指南](docs/AGENT_AUDIT.md)**
> For detailed documentation, see **[Agent Audit Guide](docs/AGENT_AUDIT.md)**
---
## 🔌 支持的 LLM 平台
## Supported LLM Platforms
<table>
<tr>
<td align="center" width="33%">
<h3>🌍 国际平台</h3>
<h3>International Platforms</h3>
<p>
OpenAI GPT-4o / GPT-4<br/>
Claude 3.5 Sonnet / Opus<br/>
@ -317,85 +290,85 @@ DeepSeek V3
</p>
</td>
<td align="center" width="33%">
<h3>🇨🇳 国内平台</h3>
<h3>Chinese Platforms</h3>
<p>
通义千问 Qwen<br/>
智谱 GLM-4<br/>
Qwen (Tongyi Qianwen)<br/>
Zhipu GLM-4<br/>
Moonshot Kimi<br/>
文心一言 · MiniMax · 豆包
Wenxin · MiniMax · Doubao
</p>
</td>
<td align="center" width="33%">
<h3>🏠 本地部署</h3>
<h3>Local Deployment</h3>
<p>
<strong>Ollama</strong><br/>
Llama3 · Qwen2.5 · CodeLlama<br/>
DeepSeek-Coder · Codestral<br/>
<em>代码不出内网</em>
<em>Code stays on-premises</em>
</p>
</td>
</tr>
</table>
> 💡 支持 API 中转站,解决网络访问问题 | 详细配置 → [LLM 平台支持](docs/LLM_PROVIDERS.md)
> Supports API proxies to solve network access issues | Detailed configuration → [LLM Platform Support](docs/LLM_PROVIDERS.md)
---
## 🎯 功能矩阵
## Feature Matrix
| 功能 | 说明 | 模式 |
| Feature | Description | Mode |
|------|------|------|
| 🤖 **Agent 深度审计** | Multi-Agent 协作,自主编排审计策略 | Agent |
| 🧠 **RAG 知识增强** | 代码语义理解CWE/CVE 知识库检索 | Agent |
| 🔒 **沙箱 PoC 验证** | Docker 隔离执行,验证漏洞有效性 | Agent |
| 🗂️ **项目管理** | GitHub/GitLab 导入ZIP 上传10+ 语言支持 | 通用 |
| **即时分析** | 代码片段秒级分析,粘贴即用 | 通用 |
| 🔍 **五维检测** | Bug · 安全 · 性能 · 风格 · 可维护性 | 通用 |
| 💡 **What-Why-How** | 精准定位 + 原因解释 + 修复建议 | 通用 |
| 📋 **审计规则** | 内置 OWASP Top 10支持自定义规则集 | 通用 |
| 📝 **提示词模板** | 可视化管理,支持中英文双语 | 通用 |
| 📊 **报告导出** | PDF / Markdown / JSON 一键导出 | 通用 |
| ⚙️ **运行时配置** | 浏览器配置 LLM无需重启服务 | 通用 |
| **Agent Deep Audit** | Multi-Agent collaboration, autonomous audit strategy orchestration | Agent |
| **RAG Knowledge Enhancement** | Code semantic understanding, CWE/CVE knowledge base retrieval | Agent |
| **Sandbox PoC Verification** | Docker isolated execution, verify vulnerability validity | Agent |
| **Project Management** | GitHub/GitLab import, ZIP upload, 10+ language support | General |
| **Instant Analysis** | Code snippet analysis in seconds, paste and use | General |
| **Five-Dimensional Detection** | Bug · Security · Performance · Style · Maintainability | General |
| **What-Why-How** | Precise location + cause explanation + fix suggestions | General |
| **Audit Rules** | Built-in OWASP Top 10, supports custom rule sets | General |
| **Prompt Templates** | Visual management, bilingual support | General |
| **Report Export** | One-click export to PDF / Markdown / JSON | General |
| **Runtime Configuration** | Configure LLM in browser, no service restart needed | General |
## 🦖 发展路线图
## Roadmap
我们正在持续演进,未来将支持更多语言和更强大的 Agent 能力。
We are continuously evolving, with more language support and stronger Agent capabilities coming.
- [x] 基础静态分析,集成 Semgrep
- [x] 引入 RAG 知识库,支持 Docker 安全沙箱
- [x] **Multi-Agent 协作架构** (Current)
- [ ] 支持更真实的模拟服务环境,进行更真实漏洞验证流程
- [ ] 沙箱从function_call优化集成为稳定MCP服务
- [ ] **自动修复 (Auto-Fix)**: Agent 直接提交 PR 修复漏洞
- [ ] **增量PR审计**: 持续跟踪 PR 变更智能分析漏洞并集成CI/CD流程
- [ ] **优化RAG**: 支持自定义知识库
- [x] Basic static analysis, Semgrep integration
- [x] RAG knowledge base introduction, Docker security sandbox support
- [x] **Multi-Agent Collaborative Architecture** (Current)
- [ ] Support for more realistic simulated service environments for more authentic vulnerability verification
- [ ] Optimize sandbox from function_call to stable MCP service
- [ ] **Auto-Fix**: Agent directly submits PRs to fix vulnerabilities
- [ ] **Incremental PR Audit**: Continuously track PR changes, intelligently analyze vulnerabilities, integrate with CI/CD
- [ ] **Optimized RAG**: Support custom knowledge bases
---
## 🤝 贡献与社区
## Contributing & Community
### 贡献指南
我们非常欢迎您的贡献!无论是提交 Issue、PR 还是完善文档。
请查看 [CONTRIBUTING.md](./CONTRIBUTING.md) 了解详情。
### Contributing Guide
We warmly welcome your contributions! Whether it's submitting Issues, PRs, or improving documentation.
Please check [CONTRIBUTING.md](./CONTRIBUTING.md) for details.
### 📬 联系作者
### Contact
<div align="center">
**欢迎大家来和我交流探讨!无论是技术问题、功能建议还是合作意向,都期待与你沟通~**
**Feel free to reach out for technical discussions, feature suggestions, or collaboration opportunities!**
| 联系方式 | |
| Contact | |
|:---:|:---:|
| 📧 **邮箱** | **lintsinghua@qq.com** |
| 🐙 **GitHub** | [@lintsinghua](https://github.com/lintsinghua) |
| **Email** | **lintsinghua@qq.com** |
| **GitHub** | [@lintsinghua](https://github.com/lintsinghua) |
</div>
## 📄 许可证
## License
本项目采用 [AGPL-3.0 License](LICENSE) 开源。
This project is open-sourced under the [AGPL-3.0 License](LICENSE).
## 📈 项目热度
## Star History
<a href="https://star-history.com/#lintsinghua/DeepAudit&Date">
<picture>
@ -413,42 +386,42 @@ DeepSeek-Coder · Codestral<br/>
---
## 致谢
## Acknowledgements
感谢以下开源项目的支持:
Thanks to the following open-source projects for their support:
[FastAPI](https://fastapi.tiangolo.com/) · [LangChain](https://langchain.com/) · [LangGraph](https://langchain-ai.github.io/langgraph/) · [ChromaDB](https://www.trychroma.com/) · [LiteLLM](https://litellm.ai/) · [Tree-sitter](https://tree-sitter.github.io/) · [Kunlun-M](https://github.com/LoRexxar/Kunlun-M) · [Strix](https://github.com/usestrix/strix) · [React](https://react.dev/) · [Vite](https://vitejs.dev/) · [Radix UI](https://www.radix-ui.com/) · [TailwindCSS](https://tailwindcss.com/) · [shadcn/ui](https://ui.shadcn.com/)
---
## ⚠️ 重要安全声明
## Important Security Notice
### 法律合规声明
1. 禁止**任何未经授权的漏洞测试、渗透测试或安全评估**
2. 本项目仅供网络空间安全学术研究、教学和学习使用
3. 严禁将本项目用于任何非法目的或未经授权的安全测试
### Legal Compliance Statement
1. **Any unauthorized vulnerability testing, penetration testing, or security assessment is prohibited**
2. This project is only for cybersecurity academic research, teaching, and learning purposes
3. It is strictly prohibited to use this project for any illegal purposes or unauthorized security testing
### 漏洞上报责任
1. 发现任何安全漏洞时,请及时通过合法渠道上报
2. 严禁利用发现的漏洞进行非法活动
3. 遵守国家网络安全法律法规,维护网络空间安全
### Vulnerability Reporting Responsibility
1. When discovering any security vulnerabilities, please report them through legitimate channels promptly
2. It is strictly prohibited to use discovered vulnerabilities for illegal activities
3. Comply with national cybersecurity laws and regulations, maintain cyberspace security
### 使用限制
- 仅限在授权环境下用于教育和研究目的
- 禁止用于对未授权系统进行安全测试
- 使用者需对自身行为承担全部法律责任
### Usage Restrictions
- Only for educational and research purposes in authorized environments
- Prohibited for security testing on unauthorized systems
- Users are fully responsible for their own actions
### 免责声明
作者不对任何因使用本项目而导致的直接或间接损失负责,使用者需对自身行为承担全部法律责任。
### Disclaimer
The author is not responsible for any direct or indirect losses caused by the use of this project. Users bear full legal responsibility for their own actions.
---
## 📖 详细安全政策
## Detailed Security Policy
有关安装政策、免责声明、代码隐私、API使用安全和漏洞报告的详细信息请参阅 [DISCLAIMER.md](DISCLAIMER.md) 和 [SECURITY.md](SECURITY.md) 文件。
For detailed information about installation policy, disclaimer, code privacy, API usage security, and vulnerability reporting, please refer to [DISCLAIMER.md](DISCLAIMER.md) and [SECURITY.md](SECURITY.md) files.
### 快速参考
- 🔒 **代码隐私警告**: 您的代码将被发送到所选择的LLM服务商服务器
- 🛡️ **敏感代码处理**: 使用本地模型处理敏感代码
- ⚠️ **合规要求**: 遵守数据保护和隐私法律法规
- 📧 **漏洞报告**: 发现安全问题请通过合法渠道上报
### Quick Reference
- **Code Privacy Warning**: Your code will be sent to the selected LLM provider's servers
- **Sensitive Code Handling**: Use local models for sensitive code
- **Compliance Requirements**: Comply with data protection and privacy laws
- **Vulnerability Reporting**: Report security issues through legitimate channels

454
README_CN.md Normal file
View File

@ -0,0 +1,454 @@
# DeepAudit - 人人拥有的 AI 审计战队,让漏洞挖掘触手可及 🦸‍♂️
<p align="center">
<strong>简体中文</strong> | <a href="README.md">English</a>
</p>
<div style="width: 100%; max-width: 600px; margin: 0 auto;">
<img src="frontend/public/images/logo.png" alt="DeepAudit Logo" style="width: 100%; height: auto; display: block; margin: 0 auto;">
</div>
<div align="center">
[![Version](https://img.shields.io/badge/version-3.0.2-blue.svg)](https://github.com/lintsinghua/DeepAudit/releases)
[![License: AGPL-3.0](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)
[![React](https://img.shields.io/badge/React-18-61dafb.svg)](https://reactjs.org/)
[![TypeScript](https://img.shields.io/badge/TypeScript-5.7-3178c6.svg)](https://www.typescriptlang.org/)
[![FastAPI](https://img.shields.io/badge/FastAPI-0.100+-009688.svg)](https://fastapi.tiangolo.com/)
[![Python](https://img.shields.io/badge/Python-3.11+-3776ab.svg)](https://www.python.org/)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/lintsinghua/DeepAudit)
[![Stars](https://img.shields.io/github/stars/lintsinghua/DeepAudit?style=social)](https://github.com/lintsinghua/DeepAudit/stargazers)
[![Forks](https://img.shields.io/github/forks/lintsinghua/DeepAudit?style=social)](https://github.com/lintsinghua/DeepAudit/network/members)
<a href="https://trendshift.io/repositories/15634" target="_blank"><img src="https://trendshift.io/api/badge/repositories/15634" alt="lintsinghua%2FDeepAudit | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<div align="center">
<img src="frontend/public/DeepAudit.gif" alt="DeepAudit Demo" width="90%">
</div>
---
## 📸 界面预览
<div align="center">
### 🤖 Agent 审计入口
<img src="frontend/public/images/README-show/Agent审计入口首页.png" alt="Agent审计入口" width="90%">
*首页快速进入 Multi-Agent 深度审计*
</div>
<table>
<tr>
<td width="50%" align="center">
<strong>📋 审计流日志</strong><br/><br/>
<img src="frontend/public/images/README-show/审计流日志.png" alt="审计流日志" width="95%"><br/>
<em>实时查看 Agent 思考与执行过程</em>
</td>
<td width="50%" align="center">
<strong>🎛️ 智能仪表盘</strong><br/><br/>
<img src="frontend/public/images/README-show/仪表盘.png" alt="仪表盘" width="95%"><br/>
<em>一眼掌握项目安全态势</em>
</td>
</tr>
<tr>
<td width="50%" align="center">
<strong>⚡ 即时分析</strong><br/><br/>
<img src="frontend/public/images/README-show/即时分析.png" alt="即时分析" width="95%"><br/>
<em>粘贴代码 / 上传文件,秒出结果</em>
</td>
<td width="50%" align="center">
<strong>🗂️ 项目管理</strong><br/><br/>
<img src="frontend/public/images/README-show/项目管理.png" alt="项目管理" width="95%"><br/>
<em>GitHub/GitLab 导入,多项目协同管理</em>
</td>
</tr>
</table>
<div align="center">
### 📊 专业报告
<img src="frontend/public/images/README-show/审计报告示例.png" alt="审计报告" width="90%">
*一键导出 PDF / Markdown / JSON*图中为快速模式非Agent模式报告
👉 [查看Agent审计完整报告示例](https://lintsinghua.github.io/)
</div>
---
## ⚡ 项目概述
**DeepAudit** 是一个基于 **Multi-Agent 协作架构**的下一代代码安全审计平台。它不仅仅是一个静态扫描工具,而是模拟安全专家的思维模式,通过多个智能体(**Orchestrator**, **Recon**, **Analysis**, **Verification**)的自主协作,实现对代码的深度理解、漏洞挖掘和 **自动化沙箱 PoC 验证**
我们致力于解决传统 SAST 工具的三大痛点:
- **误报率高** — 缺乏语义理解,大量误报消耗人力
- **业务逻辑盲点** — 无法理解跨文件调用和复杂逻辑
- **缺乏验证手段** — 不知道漏洞是否真实可利用
用户只需导入项目DeepAudit 便全自动开始工作:识别技术栈 → 分析潜在风险 → 生成脚本 → 沙箱验证 → 生成报告,最终输出一份专业审计报告。
> **核心理念**: 让 AI 像黑客一样攻击,像专家一样防御。
## 💡 为什么选择 DeepAudit
<div align="center">
| 😫 传统审计的痛点 | 💡 DeepAudit 解决方案 |
| :--- | :--- |
| **人工审计效率低**<br>跨不上 CI/CD 代码迭代速度,拖慢发布流程 | **🤖 Multi-Agent 自主审计**<br>AI 自动编排审计策略,全天候自动化执行 |
| **传统工具误报多**<br>缺乏语义理解,每天花费大量时间清洗噪音 | **🧠 RAG 知识库增强**<br>结合代码语义与上下文,大幅降低误报率 |
| **数据隐私担忧**<br>担心核心源码泄露给云端 AI无法满足合规要求 | **🔒 支持 Ollama 本地部署**<br>数据不出内网,支持 Llama3/DeepSeek 等本地模型 |
| **无法确认真实性**<br>外包项目漏洞多,不知道哪些漏洞真实可被利用 | **💥 沙箱 PoC 验证**<br>自动生成并执行攻击脚本,确认漏洞真实危害 |
</div>
---
## 🏗️ 系统架构
### 整体架构图
DeepAudit 采用微服务架构,核心由 Multi-Agent 引擎驱动。
<div align="center">
<img src="frontend/public/images/README-show/架构图.png" alt="DeepAudit 架构图" width="90%">
</div>
### 🔄 审计工作流
| 步骤 | 阶段 | 负责 Agent | 主要动作 |
|:---:|:---:|:---:|:---|
| 1 | **策略规划** | **Orchestrator** | 接收审计任务,分析项目类型,制定审计计划,下发任务给子 Agent |
| 2 | **信息收集** | **Recon Agent** | 扫描项目结构,识别框架/库/API提取攻击面Entry Points |
| 3 | **漏洞挖掘** | **Analysis Agent** | 结合 RAG 知识库与 AST 分析,深度审查代码,发现潜在漏洞 |
| 4 | **PoC 验证** | **Verification Agent** | **(关键)** 编写 PoC 脚本,在 Docker 沙箱中执行。如失败则自我修正重试 |
| 5 | **报告生成** | **Orchestrator** | 汇总所有发现,剔除被验证为误报的漏洞,生成最终报告 |
### 📂 项目代码结构
```text
DeepAudit/
├── backend/ # Python FastAPI 后端
│ ├── app/
│ │ ├── agents/ # Multi-Agent 核心逻辑
│ │ │ ├── orchestrator.py # 总指挥:任务编排
│ │ │ ├── recon.py # 侦察兵:资产识别
│ │ │ ├── analysis.py # 分析师:漏洞挖掘
│ │ │ └── verification.py # 验证者:沙箱 PoC
│ │ ├── core/ # 核心配置与沙箱接口
│ │ ├── models/ # 数据库模型
│ │ └── services/ # RAG, LLM 服务封装
│ └── tests/ # 单元测试
├── frontend/ # React + TypeScript 前端
│ ├── src/
│ │ ├── components/ # UI 组件库
│ │ ├── pages/ # 页面路由
│ │ └── stores/ # Zustand 状态管理
├── docker/ # Docker 部署配置
│ ├── sandbox/ # 安全沙箱镜像构建
│ └── postgres/ # 数据库初始化
└── docs/ # 详细文档
```
---
## 🚀 快速开始
### 方式一:一行命令部署(推荐)
使用预构建的 Docker 镜像,无需克隆代码,一行命令即可启动:
```bash
curl -fsSL https://raw.githubusercontent.com/lintsinghua/DeepAudit/v3.0.0/docker-compose.prod.yml | docker compose -f - up -d
```
## 🇨🇳 国内加速部署(作者亲测非常无敌之快)
使用南京大学镜像站加速拉取 Docker 镜像(将 `ghcr.io` 替换为 `ghcr.nju.edu.cn`
```bash
# 国内加速版 - 使用南京大学 GHCR 镜像站
curl -fsSL https://raw.githubusercontent.com/lintsinghua/DeepAudit/v3.0.0/docker-compose.prod.cn.yml | docker compose -f - up -d
```
<details>
<summary>手动拉取镜像(如需单独拉取)(点击展开)</summary>
```bash
# 前端镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-frontend:latest
# 后端镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-backend:latest
# 沙箱镜像
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-sandbox:latest
```
</details>
> 💡 镜像源由 [南京大学开源镜像站](https://mirrors.nju.edu.cn/) 提供支持
> 🎉 **启动成功!** 访问 http://localhost:3000 开始体验。
---
### 方式二:克隆代码部署
适合需要自定义配置或二次开发的用户:
```bash
# 1. 克隆项目
git clone https://github.com/lintsinghua/DeepAudit.git && cd DeepAudit
# 2. 配置环境变量
cp backend/env.example backend/.env
# 编辑 backend/.env 填入你的 LLM API Key
# 3. 一键启动
docker compose up -d
```
> 首次启动会自动构建沙箱镜像,可能需要几分钟。
---
## 🔧 源码开发指南
适合开发者进行二次开发调试。
### 环境要求
- Python 3.11+
- Node.js 20+
- PostgreSQL 15+
- Docker (用于沙箱)
### 1. 后端启动
```bash
cd backend
# 使用 uv 管理环境(推荐)
uv sync
source .venv/bin/activate
# 启动 API 服务
uvicorn app.main:app --reload
```
### 2. 前端启动
```bash
cd frontend
pnpm install
pnpm dev
```
### 3. 沙箱环境
开发模式下需要本地 Docker 拉取沙箱镜像:
```bash
# 标准拉取
docker pull ghcr.io/lintsinghua/deepaudit-sandbox:latest
# 国内加速(南京大学镜像站)
docker pull ghcr.nju.edu.cn/lintsinghua/deepaudit-sandbox:latest
```
---
## 🤖 Multi-Agent 智能审计
### 支持的漏洞类型
<table>
<tr>
<td>
| 漏洞类型 | 描述 |
|---------|------|
| `sql_injection` | SQL 注入 |
| `xss` | 跨站脚本攻击 |
| `command_injection` | 命令注入 |
| `path_traversal` | 路径遍历 |
| `ssrf` | 服务端请求伪造 |
| `xxe` | XML 外部实体注入 |
</td>
<td>
| 漏洞类型 | 描述 |
|---------|------|
| `insecure_deserialization` | 不安全反序列化 |
| `hardcoded_secret` | 硬编码密钥 |
| `weak_crypto` | 弱加密算法 |
| `authentication_bypass` | 认证绕过 |
| `authorization_bypass` | 授权绕过 |
| `idor` | 不安全直接对象引用 |
</td>
</tr>
</table>
> 📖 详细文档请查看 **[Agent 审计指南](docs/AGENT_AUDIT.md)**
---
## 🔌 支持的 LLM 平台
<table>
<tr>
<td align="center" width="33%">
<h3>🌍 国际平台</h3>
<p>
OpenAI GPT-4o / GPT-4<br/>
Claude 3.5 Sonnet / Opus<br/>
Google Gemini Pro<br/>
DeepSeek V3
</p>
</td>
<td align="center" width="33%">
<h3>🇨🇳 国内平台</h3>
<p>
通义千问 Qwen<br/>
智谱 GLM-4<br/>
Moonshot Kimi<br/>
文心一言 · MiniMax · 豆包
</p>
</td>
<td align="center" width="33%">
<h3>🏠 本地部署</h3>
<p>
<strong>Ollama</strong><br/>
Llama3 · Qwen2.5 · CodeLlama<br/>
DeepSeek-Coder · Codestral<br/>
<em>代码不出内网</em>
</p>
</td>
</tr>
</table>
> 💡 支持 API 中转站,解决网络访问问题 | 详细配置 → [LLM 平台支持](docs/LLM_PROVIDERS.md)
---
## 🎯 功能矩阵
| 功能 | 说明 | 模式 |
|------|------|------|
| 🤖 **Agent 深度审计** | Multi-Agent 协作,自主编排审计策略 | Agent |
| 🧠 **RAG 知识增强** | 代码语义理解CWE/CVE 知识库检索 | Agent |
| 🔒 **沙箱 PoC 验证** | Docker 隔离执行,验证漏洞有效性 | Agent |
| 🗂️ **项目管理** | GitHub/GitLab 导入ZIP 上传10+ 语言支持 | 通用 |
| ⚡ **即时分析** | 代码片段秒级分析,粘贴即用 | 通用 |
| 🔍 **五维检测** | Bug · 安全 · 性能 · 风格 · 可维护性 | 通用 |
| 💡 **What-Why-How** | 精准定位 + 原因解释 + 修复建议 | 通用 |
| 📋 **审计规则** | 内置 OWASP Top 10支持自定义规则集 | 通用 |
| 📝 **提示词模板** | 可视化管理,支持中英文双语 | 通用 |
| 📊 **报告导出** | PDF / Markdown / JSON 一键导出 | 通用 |
| ⚙️ **运行时配置** | 浏览器配置 LLM无需重启服务 | 通用 |
## 🦖 发展路线图
我们正在持续演进,未来将支持更多语言和更强大的 Agent 能力。
- [x] 基础静态分析,集成 Semgrep
- [x] 引入 RAG 知识库,支持 Docker 安全沙箱
- [x] **Multi-Agent 协作架构** (Current)
- [ ] 支持更真实的模拟服务环境,进行更真实漏洞验证流程
- [ ] 沙箱从function_call优化集成为稳定MCP服务
- [ ] **自动修复 (Auto-Fix)**: Agent 直接提交 PR 修复漏洞
- [ ] **增量PR审计**: 持续跟踪 PR 变更智能分析漏洞并集成CI/CD流程
- [ ] **优化RAG**: 支持自定义知识库
---
## 🤝 贡献与社区
### 贡献指南
我们非常欢迎您的贡献!无论是提交 Issue、PR 还是完善文档。
请查看 [CONTRIBUTING.md](./CONTRIBUTING.md) 了解详情。
### 📬 联系作者
<div align="center">
**欢迎大家来和我交流探讨!无论是技术问题、功能建议还是合作意向,都期待与你沟通~**
| 联系方式 | |
|:---:|:---:|
| 📧 **邮箱** | **lintsinghua@qq.com** |
| 🐙 **GitHub** | [@lintsinghua](https://github.com/lintsinghua) |
</div>
## 📄 许可证
本项目采用 [AGPL-3.0 License](LICENSE) 开源。
## 📈 项目热度
<a href="https://star-history.com/#lintsinghua/DeepAudit&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date" />
</picture>
</a>
---
<div align="center">
<strong>Made with ❤️ by <a href="https://github.com/lintsinghua">lintsinghua</a></strong>
</div>
---
## 致谢
感谢以下开源项目的支持:
[FastAPI](https://fastapi.tiangolo.com/) · [LangChain](https://langchain.com/) · [LangGraph](https://langchain-ai.github.io/langgraph/) · [ChromaDB](https://www.trychroma.com/) · [LiteLLM](https://litellm.ai/) · [Tree-sitter](https://tree-sitter.github.io/) · [Kunlun-M](https://github.com/LoRexxar/Kunlun-M) · [Strix](https://github.com/usestrix/strix) · [React](https://react.dev/) · [Vite](https://vitejs.dev/) · [Radix UI](https://www.radix-ui.com/) · [TailwindCSS](https://tailwindcss.com/) · [shadcn/ui](https://ui.shadcn.com/)
---
## ⚠️ 重要安全声明
### 法律合规声明
1. 禁止**任何未经授权的漏洞测试、渗透测试或安全评估**
2. 本项目仅供网络空间安全学术研究、教学和学习使用
3. 严禁将本项目用于任何非法目的或未经授权的安全测试
### 漏洞上报责任
1. 发现任何安全漏洞时,请及时通过合法渠道上报
2. 严禁利用发现的漏洞进行非法活动
3. 遵守国家网络安全法律法规,维护网络空间安全
### 使用限制
- 仅限在授权环境下用于教育和研究目的
- 禁止用于对未授权系统进行安全测试
- 使用者需对自身行为承担全部法律责任
### 免责声明
作者不对任何因使用本项目而导致的直接或间接损失负责,使用者需对自身行为承担全部法律责任。
---
## 📖 详细安全政策
有关安装政策、免责声明、代码隐私、API使用安全和漏洞报告的详细信息请参阅 [DISCLAIMER.md](DISCLAIMER.md) 和 [SECURITY.md](SECURITY.md) 文件。
### 快速参考
- 🔒 **代码隐私警告**: 您的代码将被发送到所选择的LLM服务商服务器
- 🛡️ **敏感代码处理**: 使用本地模型处理敏感代码
- ⚠️ **合规要求**: 遵守数据保护和隐私法律法规
- 📧 **漏洞报告**: 发现安全问题请通过合法渠道上报

View File

@ -1,427 +0,0 @@
# DeepAudit - Your AI Security Audit Team, Making Vulnerability Discovery Accessible
> Making code vulnerability discovery as easy as breathing, even beginners can find bugs
<p align="center">
<a href="README.md">简体中文</a> | <strong>English</strong>
</p>
<div style="width: 100%; max-width: 600px; margin: 0 auto;">
<img src="frontend/public/images/logo.png" alt="DeepAudit Logo" style="width: 100%; height: auto; display: block; margin: 0 auto;">
</div>
<div align="center">
[![Version](https://img.shields.io/badge/version-3.0.2-blue.svg)](https://github.com/lintsinghua/DeepAudit/releases)
[![License: AGPL-3.0](https://img.shields.io/badge/License-AGPL--3.0-blue.svg)](https://www.gnu.org/licenses/agpl-3.0)
[![React](https://img.shields.io/badge/React-18-61dafb.svg)](https://reactjs.org/)
[![TypeScript](https://img.shields.io/badge/TypeScript-5.7-3178c6.svg)](https://www.typescriptlang.org/)
[![FastAPI](https://img.shields.io/badge/FastAPI-0.100+-009688.svg)](https://fastapi.tiangolo.com/)
[![Python](https://img.shields.io/badge/Python-3.11+-3776ab.svg)](https://www.python.org/)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/lintsinghua/DeepAudit)
[![Stars](https://img.shields.io/github/stars/lintsinghua/DeepAudit?style=social)](https://github.com/lintsinghua/DeepAudit/stargazers)
[![Forks](https://img.shields.io/github/forks/lintsinghua/DeepAudit?style=social)](https://github.com/lintsinghua/DeepAudit/network/members)
<a href="https://trendshift.io/repositories/15634" target="_blank"><img src="https://trendshift.io/api/badge/repositories/15634" alt="lintsinghua%2FDeepAudit | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
<div align="center">
<img src="frontend/public/DeepAudit.gif" alt="DeepAudit Demo" width="90%">
</div>
---
## Screenshots
<div align="center">
### Agent Audit Entry
<img src="frontend/public/images/README-show/Agent审计入口首页.png" alt="Agent Audit Entry" width="90%">
*Quick access to Multi-Agent deep audit from homepage*
</div>
<table>
<tr>
<td width="50%" align="center">
<strong>Audit Flow Logs</strong><br/><br/>
<img src="frontend/public/images/README-show/审计流日志.png" alt="Audit Flow Logs" width="95%"><br/>
<em>Real-time view of Agent thinking and execution process</em>
</td>
<td width="50%" align="center">
<strong>Smart Dashboard</strong><br/><br/>
<img src="frontend/public/images/README-show/仪表盘.png" alt="Dashboard" width="95%"><br/>
<em>Grasp project security posture at a glance</em>
</td>
</tr>
<tr>
<td width="50%" align="center">
<strong>Instant Analysis</strong><br/><br/>
<img src="frontend/public/images/README-show/即时分析.png" alt="Instant Analysis" width="95%"><br/>
<em>Paste code / upload files, get results in seconds</em>
</td>
<td width="50%" align="center">
<strong>Project Management</strong><br/><br/>
<img src="frontend/public/images/README-show/项目管理.png" alt="Project Management" width="95%"><br/>
<em>GitHub/GitLab import, multi-project collaboration</em>
</td>
</tr>
</table>
<div align="center">
### Professional Reports
<img src="frontend/public/images/README-show/审计报告示例.png" alt="Audit Report" width="90%">
*One-click export to PDF / Markdown / JSON* (Quick mode shown, not Agent mode report)
[View Full Agent Audit Report Example](https://lintsinghua.github.io/)
</div>
---
## Overview
**DeepAudit** is a next-generation code security audit platform based on **Multi-Agent collaborative architecture**. It's not just a static scanning tool, but simulates the thinking patterns of security experts through autonomous collaboration of multiple agents (**Orchestrator**, **Recon**, **Analysis**, **Verification**), achieving deep code understanding, vulnerability discovery, and **automated sandbox PoC verification**.
We are committed to solving three major pain points of traditional SAST tools:
- **High false positive rate** — Lack of semantic understanding, massive false positives consume manpower
- **Business logic blind spots** — Cannot understand cross-file calls and complex logic
- **Lack of verification methods** — Don't know if vulnerabilities are actually exploitable
Users only need to import a project, and DeepAudit automatically starts working: identify tech stack → analyze potential risks → generate scripts → sandbox verification → generate report, ultimately outputting a professional audit report.
> **Core Philosophy**: Let AI attack like a hacker, defend like an expert.
## Why Choose DeepAudit?
<div align="center">
| Traditional Audit Pain Points | DeepAudit Solutions |
| :--- | :--- |
| **Low manual audit efficiency**<br>Can't keep up with CI/CD iteration speed, slowing release process | **Multi-Agent Autonomous Audit**<br>AI automatically orchestrates audit strategies, 24/7 automated execution |
| **Too many false positives**<br>Lack of semantic understanding, spending lots of time cleaning noise daily | **RAG Knowledge Enhancement**<br>Combining code semantics with context, significantly reducing false positives |
| **Data privacy concerns**<br>Worried about core source code leaking to cloud AI, can't meet compliance requirements | **Ollama Local Deployment Support**<br>Data stays on-premises, supports Llama3/DeepSeek and other local models |
| **Can't confirm authenticity**<br>Outsourced projects have many vulnerabilities, don't know which are truly exploitable | **Sandbox PoC Verification**<br>Automatically generate and execute attack scripts, confirm real vulnerability impact |
</div>
---
## System Architecture
### Architecture Diagram
DeepAudit adopts microservices architecture, driven by the Multi-Agent engine at its core.
<div align="center">
<img src="frontend/public/images/README-show/架构图.png" alt="DeepAudit Architecture" width="90%">
</div>
### Audit Workflow
| Step | Phase | Responsible Agent | Main Actions |
|:---:|:---:|:---:|:---|
| 1 | **Strategy Planning** | **Orchestrator** | Receive audit task, analyze project type, formulate audit plan, dispatch tasks to sub-agents |
| 2 | **Information Gathering** | **Recon Agent** | Scan project structure, identify frameworks/libraries/APIs, extract attack surface (Entry Points) |
| 3 | **Vulnerability Discovery** | **Analysis Agent** | Combine RAG knowledge base with AST analysis, deep code review, discover potential vulnerabilities |
| 4 | **PoC Verification** | **Verification Agent** | **(Critical)** Write PoC scripts, execute in Docker sandbox. Self-correct and retry if failed |
| 5 | **Report Generation** | **Orchestrator** | Aggregate all findings, filter out verified false positives, generate final report |
### Project Structure
```text
DeepAudit/
├── backend/ # Python FastAPI Backend
│ ├── app/
│ │ ├── agents/ # Multi-Agent Core Logic
│ │ │ ├── orchestrator.py # Commander: Task Orchestration
│ │ │ ├── recon.py # Scout: Asset Identification
│ │ │ ├── analysis.py # Analyst: Vulnerability Discovery
│ │ │ └── verification.py # Verifier: Sandbox PoC
│ │ ├── core/ # Core Config & Sandbox Interface
│ │ ├── models/ # Database Models
│ │ └── services/ # RAG, LLM Service Wrappers
│ └── tests/ # Unit Tests
├── frontend/ # React + TypeScript Frontend
│ ├── src/
│ │ ├── components/ # UI Component Library
│ │ ├── pages/ # Page Routes
│ │ └── stores/ # Zustand State Management
├── docker/ # Docker Deployment Config
│ ├── sandbox/ # Security Sandbox Image Build
│ └── postgres/ # Database Initialization
└── docs/ # Detailed Documentation
```
---
## Quick Start
### Option 1: One-Line Deployment (Recommended)
Using pre-built Docker images, no need to clone code, start with one command:
```bash
curl -fsSL https://raw.githubusercontent.com/lintsinghua/DeepAudit/v3.0.0/docker-compose.prod.yml | docker compose -f - up -d
```
> **Success!** Visit http://localhost:3000 to start exploring.
---
### Option 2: Clone and Deploy
Suitable for users who need custom configuration or secondary development:
```bash
# 1. Clone project
git clone https://github.com/lintsinghua/DeepAudit.git && cd DeepAudit
# 2. Configure environment variables
cp backend/env.example backend/.env
# Edit backend/.env and fill in your LLM API Key
# 3. One-click start
docker compose up -d
```
> First startup will automatically build the sandbox image, which may take a few minutes.
---
## Development Guide
For developers doing secondary development and debugging.
### Requirements
- Python 3.11+
- Node.js 20+
- PostgreSQL 15+
- Docker (for sandbox)
### 1. Backend Setup
```bash
cd backend
# Use uv for environment management (recommended)
uv sync
source .venv/bin/activate
# Start API service
uvicorn app.main:app --reload
```
### 2. Frontend Setup
```bash
cd frontend
pnpm install
pnpm dev
```
### 3. Sandbox Environment
Development mode requires pulling the sandbox image locally:
```bash
docker pull ghcr.io/lintsinghua/deepaudit-sandbox:latest
```
---
## Multi-Agent Intelligent Audit
### Supported Vulnerability Types
<table>
<tr>
<td>
| Vulnerability Type | Description |
|---------|------|
| `sql_injection` | SQL Injection |
| `xss` | Cross-Site Scripting |
| `command_injection` | Command Injection |
| `path_traversal` | Path Traversal |
| `ssrf` | Server-Side Request Forgery |
| `xxe` | XML External Entity Injection |
</td>
<td>
| Vulnerability Type | Description |
|---------|------|
| `insecure_deserialization` | Insecure Deserialization |
| `hardcoded_secret` | Hardcoded Secrets |
| `weak_crypto` | Weak Cryptography |
| `authentication_bypass` | Authentication Bypass |
| `authorization_bypass` | Authorization Bypass |
| `idor` | Insecure Direct Object Reference |
</td>
</tr>
</table>
> For detailed documentation, see **[Agent Audit Guide](docs/AGENT_AUDIT.md)**
---
## Supported LLM Platforms
<table>
<tr>
<td align="center" width="33%">
<h3>International Platforms</h3>
<p>
OpenAI GPT-4o / GPT-4<br/>
Claude 3.5 Sonnet / Opus<br/>
Google Gemini Pro<br/>
DeepSeek V3
</p>
</td>
<td align="center" width="33%">
<h3>Chinese Platforms</h3>
<p>
Qwen (Tongyi Qianwen)<br/>
Zhipu GLM-4<br/>
Moonshot Kimi<br/>
Wenxin · MiniMax · Doubao
</p>
</td>
<td align="center" width="33%">
<h3>Local Deployment</h3>
<p>
<strong>Ollama</strong><br/>
Llama3 · Qwen2.5 · CodeLlama<br/>
DeepSeek-Coder · Codestral<br/>
<em>Code stays on-premises</em>
</p>
</td>
</tr>
</table>
> Supports API proxies to solve network access issues | Detailed configuration → [LLM Platform Support](docs/LLM_PROVIDERS.md)
---
## Feature Matrix
| Feature | Description | Mode |
|------|------|------|
| **Agent Deep Audit** | Multi-Agent collaboration, autonomous audit strategy orchestration | Agent |
| **RAG Knowledge Enhancement** | Code semantic understanding, CWE/CVE knowledge base retrieval | Agent |
| **Sandbox PoC Verification** | Docker isolated execution, verify vulnerability validity | Agent |
| **Project Management** | GitHub/GitLab import, ZIP upload, 10+ language support | General |
| **Instant Analysis** | Code snippet analysis in seconds, paste and use | General |
| **Five-Dimensional Detection** | Bug · Security · Performance · Style · Maintainability | General |
| **What-Why-How** | Precise location + cause explanation + fix suggestions | General |
| **Audit Rules** | Built-in OWASP Top 10, supports custom rule sets | General |
| **Prompt Templates** | Visual management, bilingual support | General |
| **Report Export** | One-click export to PDF / Markdown / JSON | General |
| **Runtime Configuration** | Configure LLM in browser, no service restart needed | General |
## Roadmap
We are continuously evolving, with more language support and stronger Agent capabilities coming.
- [x] Basic static analysis, Semgrep integration
- [x] RAG knowledge base introduction, Docker security sandbox support
- [x] **Multi-Agent Collaborative Architecture** (Current)
- [ ] Support for more realistic simulated service environments for more authentic vulnerability verification
- [ ] Optimize sandbox from function_call to stable MCP service
- [ ] **Auto-Fix**: Agent directly submits PRs to fix vulnerabilities
- [ ] **Incremental PR Audit**: Continuously track PR changes, intelligently analyze vulnerabilities, integrate with CI/CD
- [ ] **Optimized RAG**: Support custom knowledge bases
---
## Contributing & Community
### Contributing Guide
We warmly welcome your contributions! Whether it's submitting Issues, PRs, or improving documentation.
Please check [CONTRIBUTING.md](./CONTRIBUTING.md) for details.
### Contact
<div align="center">
**Feel free to reach out for technical discussions, feature suggestions, or collaboration opportunities!**
| Contact | |
|:---:|:---:|
| **Email** | **lintsinghua@qq.com** |
| **GitHub** | [@lintsinghua](https://github.com/lintsinghua) |
</div>
## License
This project is open-sourced under the [AGPL-3.0 License](LICENSE).
## Star History
<a href="https://star-history.com/#lintsinghua/DeepAudit&Date">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=lintsinghua/DeepAudit&type=Date" />
</picture>
</a>
---
<div align="center">
<strong>Made with ❤️ by <a href="https://github.com/lintsinghua">lintsinghua</a></strong>
</div>
---
## Acknowledgements
Thanks to the following open-source projects for their support:
[FastAPI](https://fastapi.tiangolo.com/) · [LangChain](https://langchain.com/) · [LangGraph](https://langchain-ai.github.io/langgraph/) · [ChromaDB](https://www.trychroma.com/) · [LiteLLM](https://litellm.ai/) · [Tree-sitter](https://tree-sitter.github.io/) · [Kunlun-M](https://github.com/LoRexxar/Kunlun-M) · [Strix](https://github.com/usestrix/strix) · [React](https://react.dev/) · [Vite](https://vitejs.dev/) · [Radix UI](https://www.radix-ui.com/) · [TailwindCSS](https://tailwindcss.com/) · [shadcn/ui](https://ui.shadcn.com/)
---
## Important Security Notice
### Legal Compliance Statement
1. **Any unauthorized vulnerability testing, penetration testing, or security assessment is prohibited**
2. This project is only for cybersecurity academic research, teaching, and learning purposes
3. It is strictly prohibited to use this project for any illegal purposes or unauthorized security testing
### Vulnerability Reporting Responsibility
1. When discovering any security vulnerabilities, please report them through legitimate channels promptly
2. It is strictly prohibited to use discovered vulnerabilities for illegal activities
3. Comply with national cybersecurity laws and regulations, maintain cyberspace security
### Usage Restrictions
- Only for educational and research purposes in authorized environments
- Prohibited for security testing on unauthorized systems
- Users are fully responsible for their own actions
### Disclaimer
The author is not responsible for any direct or indirect losses caused by the use of this project. Users bear full legal responsibility for their own actions.
---
## Detailed Security Policy
For detailed information about installation policy, disclaimer, code privacy, API usage security, and vulnerability reporting, please refer to [DISCLAIMER.md](DISCLAIMER.md) and [SECURITY.md](SECURITY.md) files.
### Quick Reference
- **Code Privacy Warning**: Your code will be sent to the selected LLM provider's servers
- **Sensitive Code Handling**: Use local models for sensitive code
- **Compliance Requirements**: Comply with data protection and privacy laws
- **Vulnerability Reporting**: Report security issues through legitimate channels