fix: Enhance robustness of issue and quality score processing in the scanner service by adding defensive checks and error handling.
This commit is contained in:
parent
0735834931
commit
18613d533f
|
|
@ -333,16 +333,13 @@ Please analyze the following code:
|
|||
# 尝试从响应中提取JSON
|
||||
result = self._parse_json(content)
|
||||
|
||||
# 验证和清理结果
|
||||
result = self._validate_analysis_result(result)
|
||||
|
||||
# 记录解析后的问题数量
|
||||
issues_count = len(result.get("issues", []))
|
||||
logger.info(f"📊 LLM 分析结果: 发现 {issues_count} 个问题, 质量评分: {result.get('quality_score', 'N/A')}")
|
||||
|
||||
# 检查解析结果是否有效(不是默认响应)
|
||||
if result == self._get_default_response():
|
||||
error_msg = f"无法解析LLM响应为有效的分析结果 - Provider: {self.config.provider.value}"
|
||||
logger.error(error_msg)
|
||||
raise Exception(error_msg)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -763,6 +760,54 @@ Please analyze the following code:
|
|||
|
||||
raise ValueError(f"json-repair returned unexpected type: {type(repaired)}")
|
||||
|
||||
def _validate_analysis_result(self, result: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""验证和清理分析结果"""
|
||||
if not isinstance(result, dict):
|
||||
logger.warning(f"分析结果不是字典类型: {type(result)}")
|
||||
return self._get_default_response()
|
||||
|
||||
# 确保 issues 是列表,且每个元素都是字典
|
||||
raw_issues = result.get("issues", [])
|
||||
if not isinstance(raw_issues, list):
|
||||
logger.warning(f"issues 字段不是列表类型: {type(raw_issues)}")
|
||||
raw_issues = []
|
||||
|
||||
valid_issues = []
|
||||
for i, issue in enumerate(raw_issues):
|
||||
if isinstance(issue, dict):
|
||||
valid_issues.append(issue)
|
||||
else:
|
||||
logger.warning(f"忽略无效的问题格式 (index {i}): {type(issue)}")
|
||||
|
||||
result["issues"] = valid_issues
|
||||
|
||||
# 确保 quality_score 是数字
|
||||
score = result.get("quality_score")
|
||||
if score is None or not isinstance(score, (int, float)):
|
||||
try:
|
||||
if score is not None:
|
||||
result["quality_score"] = int(float(str(score)))
|
||||
else:
|
||||
result["quality_score"] = 80
|
||||
except (ValueError, TypeError):
|
||||
result["quality_score"] = 80
|
||||
|
||||
# 确保 summary 和 metrics 存在
|
||||
if "summary" not in result or not isinstance(result["summary"], dict):
|
||||
num_issues = len(valid_issues)
|
||||
result["summary"] = {
|
||||
"total_issues": num_issues,
|
||||
"critical_issues": sum(1 for iss in valid_issues if iss.get("severity") == "critical"),
|
||||
"high_issues": sum(1 for iss in valid_issues if iss.get("severity") == "high"),
|
||||
"medium_issues": sum(1 for iss in valid_issues if iss.get("severity") == "medium"),
|
||||
"low_issues": sum(1 for iss in valid_issues if iss.get("severity") == "low")
|
||||
}
|
||||
|
||||
if "metrics" not in result or not isinstance(result["metrics"], dict):
|
||||
result["metrics"] = self._get_default_response()["metrics"]
|
||||
|
||||
return result
|
||||
|
||||
def _get_default_response(self) -> Dict[str, Any]:
|
||||
"""返回默认响应"""
|
||||
return {
|
||||
|
|
@ -915,6 +960,8 @@ Please analyze the following code:
|
|||
raise Exception("LLM返回空响应")
|
||||
|
||||
result = self._parse_json(content)
|
||||
# 验证和清理结果
|
||||
result = self._validate_analysis_result(result)
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
|
|
|
|||
|
|
@ -680,6 +680,12 @@ async def scan_repo_task(task_id: str, db_session_factory, user_config: dict = N
|
|||
# 保存问题
|
||||
issues = analysis.get("issues", [])
|
||||
for issue in issues:
|
||||
try:
|
||||
# 防御性检查:确保 issue 是字典
|
||||
if not isinstance(issue, dict):
|
||||
print(f"⚠️ 警告: 任务 {task_id} 中文件 {f_path} 的分析结果包含无效的问题格式: {issue}")
|
||||
continue
|
||||
|
||||
line_num = issue.get("line", 1)
|
||||
code_snippet = issue.get("code_snippet")
|
||||
if not code_snippet or len(code_snippet.strip()) < 5:
|
||||
|
|
@ -707,9 +713,16 @@ async def scan_repo_task(task_id: str, db_session_factory, user_config: dict = N
|
|||
)
|
||||
db.add(audit_issue)
|
||||
total_issues += 1
|
||||
except Exception as e:
|
||||
print(f"⚠️ 处理单个问题时出错 (文件 {f_path}): {e}")
|
||||
continue
|
||||
|
||||
if "quality_score" in analysis:
|
||||
quality_scores.append(analysis["quality_score"])
|
||||
try:
|
||||
quality_score = float(analysis["quality_score"])
|
||||
quality_scores.append(quality_score)
|
||||
except (ValueError, TypeError):
|
||||
pass
|
||||
|
||||
# 更新主任务进度
|
||||
processed_count = scanned_files + failed_files
|
||||
|
|
|
|||
Loading…
Reference in New Issue