Commit Graph

17 Commits

Author SHA1 Message Date
vinland100 0e2a7dfa87 Modify the Agent audit logic to prevent infinite loops until the loop limit is triggered.
Build and Push CodeReview / build (push) Waiting to run Details
2026-01-08 14:53:34 +08:00
lintsinghua b0f17d50db docs(agent): 添加防止幻觉的验证指南和使用警告
在多个agent文件中添加详细的防止幻觉验证指南,包括:
1. 必须验证文件存在性和代码匹配性
2. 禁止猜测文件路径和行号
3. 知识库示例与实际代码的区分警告
4. 添加语言检测功能以提醒语言不匹配情况
2025-12-19 19:14:23 +08:00
lintsinghua 80704fdcb4 feat(agent): 增强文件路径验证防止幻觉报告
添加文件路径验证规则和检查逻辑,确保漏洞报告中的文件真实存在
移除LLM响应中的Markdown格式标记,统一解析处理
更新报告工具和端点以支持项目根目录验证
2025-12-19 19:08:36 +08:00
lintsinghua 8fe96a83cf feat(agent): 使用用户配置的LLM参数替代硬编码值
重构所有Agent和LLM服务,移除硬编码的temperature和max_tokens参数
添加get_analysis_config函数统一处理分析配置
在LLM测试接口中显示用户保存的配置参数
前端调试面板默认显示LLM测试详细信息
2025-12-19 16:08:26 +08:00
lintsinghua 6c080fc5d6 feat(agent): 增加漏洞文件统计功能并优化agent提示词
- 在AgentTask模型中添加files_with_findings字段统计有漏洞发现的文件数
- 更新前后端接口和界面展示漏洞文件统计
- 优化各Agent的系统提示词,移除冗余内容并增强工具使用约束
- 增加LLM的max_tokens至8192避免截断
- 添加生产环境docker-compose配置和更新README部署说明
2025-12-16 22:08:45 +08:00
lintsinghua cdf360dcf7 feat: 增加文件上传大小限制至500MB并优化大文件处理
增加ZIP文件上传大小限制从100MB到500MB
在agent工具中添加失败调用追踪和自动跳过机制
优化大文件读取性能,支持流式处理指定行范围
2025-12-15 09:21:37 +08:00
lintsinghua 2df1b39e08 feat: Introduce Kunlun agent tool, add Docker and sandbox environment checks, and update agent services and frontend dialogs. 2025-12-15 02:00:34 +08:00
lintsinghua c64eddac7c feat(agent): 新增多语言代码测试和漏洞验证工具并增强错误处理
新增 PHP、Python、JavaScript 等多语言代码测试工具和命令注入、SQL 注入等专用漏洞验证工具
优化错误处理逻辑,提供更详细的错误信息和堆栈跟踪
增强 JSON 解析器,优先使用 json-repair 库处理复杂格式
改进 Agent 响应解析逻辑,更健壮地提取思考内容和操作指令
完善沙箱管理器的初始化和错误处理机制
2025-12-14 17:20:54 +08:00
lintsinghua 4e4dd05ddb feat(agent): 增强漏洞发现处理流程和前端兼容性
- 后端添加对旧事件类型'finding'的兼容支持
- 改进漏洞发现标准化和去重逻辑
- 新增PoC生成要求和相关字段
- 优化沙箱配置初始化流程
- 前端添加ADD_FINDING操作和状态管理
- 增强事件流处理和序列号过滤
- 改进历史事件加载和SSE连接逻辑
- 添加漏洞验证状态和PoC信息到报告
2025-12-13 18:45:05 +08:00
lintsinghua 6d98f29fa6 feat: 新增安全工具集成和漏洞知识库扩展
- 添加 Bandit 和 Safety 安全工具到依赖项
- 新增 CSRF、业务逻辑和开放重定向漏洞知识文档
- 实现安全工具一键安装脚本和文档
- 改进模式匹配工具支持直接文件扫描
- 增强遥测模块和 Agent 审计功能
- 修复验证节点中 findings 合并逻辑
- 优化前端 Agent 审计界面和状态展示
2025-12-13 12:35:03 +08:00
lintsinghua 3db20a3afb feat(agent): enhance error handling and project scope filtering
- Downgrade Python version from 3.13 to 3.11.12 for compatibility
- Improve empty LLM response handling with better diagnostics and retry logic in AnalysisAgent
- Add detailed logging for empty response retries with token count and iteration tracking
- Implement fallback result generation instead of immediate failure on consecutive empty responses
- Enhance stream error handling with partial content recovery and error message propagation
- Add comprehensive exception handling in stream_llm_call to prevent error suppression
- Implement project scope filtering to ensure consistent filtered views across Orchestrator and sub-agents
- Track filtered files and directories separately when target_files are specified
- Add scope_limited flag and scope_message to project structure for transparency
- Remove manual progress_percentage setting and rely on computed property for COMPLETED status
- Improve code comments with diagnostic markers (🔥) for critical sections
2025-12-12 16:36:39 +08:00
lintsinghua f05c0073e1 feat(agent): implement comprehensive agent architecture with knowledge base and persistence layer
- Add database migrations for agent checkpoints and tree node tracking
- Implement core agent execution framework with executor, state management, and message handling
- Create knowledge base system with framework-specific modules (Django, FastAPI, Flask, Express, React, Supabase)
- Add vulnerability knowledge modules covering authentication, cryptography, injection, XSS, XXE, SSRF, path traversal, deserialization, and race conditions
- Introduce new agent tools: thinking tool, reporting tool, and agent-specific utilities
- Implement LLM memory compression and prompt caching for improved performance
- Add agent registry and persistence layer for checkpoint management
- Refactor agent implementations (analysis, recon, verification, orchestrator) with enhanced capabilities
- Remove legacy agent implementations (analysis_v2, react_agent)
- Update API endpoints for agent task creation and project management
- Add frontend components for agent task creation and enhanced audit UI
- Consolidate agent service architecture with improved separation of concerns
- This refactoring provides a scalable foundation for multi-agent collaboration with knowledge-driven decision making and state persistence
2025-12-12 15:27:12 +08:00
lintsinghua 147dfbaf5e feat(agent): enhance streaming with in-memory event manager and fallback polling
- Implement dual-mode streaming: prioritize in-memory EventManager for running tasks with thinking_token support
- Add fallback to database polling for completed tasks without thinking_token replay capability
- Introduce SSE event formatter utility for consistent event serialization across streaming modes
- Add 10ms micro-delay for thinking_token events to ensure proper TCP packet separation and frontend incremental rendering
- Refactor stream_agent_with_thinking endpoint to support both runtime and historical event streaming
- Update event filtering logic to handle both in-memory and database event sources
- Improve logging with debug markers for thinking_token tracking and stream mode selection
- Optimize polling intervals: 0.3s for running tasks, 2.0s for completed tasks
- Reduce idle timeout from 10 minutes to 1 minute for completed task streams
- Update frontend useAgentStream hook to handle unified event format from dual-mode streaming
- Enhance AgentAudit UI to properly display streamed events from both sources
2025-12-12 10:39:32 +08:00
lintsinghua 70776ee5fd feat: Introduce structured agent collaboration with `TaskHandoff` and `analysis_v2` agent, updating core agent logic, tools, and audit UI. 2025-12-11 23:29:04 +08:00
lintsinghua 8938a8a3c9 feat(agent): enhance agent functionality with LLM-driven decision-making and event handling
- Introduce LLM-driven decision-making across various agents, allowing for dynamic adjustments based on real-time analysis.
- Implement new event types for LLM thinking, decisions, actions, and observations to enrich the event streaming experience.
- Update agent task responses to include additional metrics for better tracking of task progress and outcomes.
- Refactor UI components to highlight LLM-related events and improve user interaction during audits.
- Enhance API endpoints to support new event structures and improve overall error handling.
2025-12-11 21:14:32 +08:00
lintsinghua 58c918f557 feat(agent): implement streaming support for agent events and enhance UI components
- Introduce streaming capabilities for agent events, allowing real-time updates during audits.
- Add new hooks for managing agent stream events in React components.
- Enhance the AgentAudit page to display LLM thinking processes and tool call details in real-time.
- Update API endpoints to support streaming event data and improve error handling.
- Refactor UI components for better organization and user experience during audits.
2025-12-11 20:33:46 +08:00
lintsinghua 9bc114af1f feat(agent): implement Agent audit module with LangGraph integration
- Introduce new Agent audit functionality for autonomous code security analysis and vulnerability verification.
- Add API endpoints for managing Agent tasks and configurations.
- Implement UI components for Agent mode selection and embedding model configuration.
- Enhance the overall architecture with a focus on RAG (Retrieval-Augmented Generation) for improved code semantic search.
- Create a sandbox environment for secure execution of vulnerability tests.
- Update documentation to include details on the new Agent audit features and usage instructions.
2025-12-11 19:09:10 +08:00