Commit Graph

20 Commits

Author SHA1 Message Date
vinland100 62c42341c4 feat: Implement incremental historical event loading and a centralized state synchronization mechanism, including stream reconnection, for the AgentAudit page.
Build and Push CodeReview / build (push) Waiting to run Details
2026-01-29 14:51:48 +08:00
lintsinghua 39e2f43210 feat(agent): 增强API错误处理机制
添加对API错误的分类处理,包括速率限制、配额用尽、认证和连接错误
在base.py中标记API错误前缀,orchestrator.py中实现重试逻辑
litellm_adapter.py中完善错误类型识别和用户友好提示
2025-12-25 17:35:31 +08:00
vinland100 e4f1391a28 merge: 同步上游 v3.0.0 并更新 uv 依赖锁文件 2025-12-25 11:45:52 +08:00
lintsinghua 8fe96a83cf feat(agent): 使用用户配置的LLM参数替代硬编码值
重构所有Agent和LLM服务,移除硬编码的temperature和max_tokens参数
添加get_analysis_config函数统一处理分析配置
在LLM测试接口中显示用户保存的配置参数
前端调试面板默认显示LLM测试详细信息
2025-12-19 16:08:26 +08:00
google-labs-jules[bot] 1c0ec2b13d feat: enhance Gitea support and merge upstream v3.0.0
- Merge upstream v3.0.0 changes
- Fix security vulnerabilities (SSRF, Path Traversal) by introducing `parse_repository_url` utility
- Fix token leakage and handling in `scanner.py` and `projects.py`
- Fix `NameError` in `scanner.py`
- Fix `frontend/docker-entrypoint.sh` API URL escaping
- Standardize Gitea token naming to `gitea_token`
2025-12-17 03:02:42 +00:00
lintsinghua a980fa34e1 fix(agent): 修复任务取消和LLM流式处理的多项问题
修复任务取消后仍可能标记为完成的问题,增加全局取消检查回调
移除事件管理器的人为延迟,防止队列堆积
为LLM流式调用增加超时机制和安全检查
增加验证阶段超时时间至10分钟
2025-12-16 22:47:04 +08:00
lintsinghua 6c080fc5d6 feat(agent): 增加漏洞文件统计功能并优化agent提示词
- 在AgentTask模型中添加files_with_findings字段统计有漏洞发现的文件数
- 更新前后端接口和界面展示漏洞文件统计
- 优化各Agent的系统提示词,移除冗余内容并增强工具使用约束
- 增加LLM的max_tokens至8192避免截断
- 添加生产环境docker-compose配置和更新README部署说明
2025-12-16 22:08:45 +08:00
lintsinghua 5974323a71 feat(agent): 实现任务取消和超时处理机制
添加对Agent任务的取消和超时处理支持,包括:
- 在工具执行、子Agent运行和项目初始化阶段检查取消状态
- 为不同工具和Agent类型设置合理的超时时间
- 使用asyncio实现取消检查和超时控制
- 优化取消响应速度,减少资源浪费
2025-12-16 17:31:29 +08:00
lintsinghua 3639b3a13e fix(agent): 修复工具执行结果处理中的 None 值问题
修复 AgentTool 和外部工具类中结果处理逻辑,确保 data 字段不为 None
添加调试日志和错误处理,改进工具执行失败时的反馈信息
统一所有工具类的错误处理格式,避免前端显示 "None" 字符串
2025-12-15 10:24:58 +08:00
lintsinghua c64eddac7c feat(agent): 新增多语言代码测试和漏洞验证工具并增强错误处理
新增 PHP、Python、JavaScript 等多语言代码测试工具和命令注入、SQL 注入等专用漏洞验证工具
优化错误处理逻辑,提供更详细的错误信息和堆栈跟踪
增强 JSON 解析器,优先使用 json-repair 库处理复杂格式
改进 Agent 响应解析逻辑,更健壮地提取思考内容和操作指令
完善沙箱管理器的初始化和错误处理机制
2025-12-14 17:20:54 +08:00
lintsinghua d449e2ba78 Fix: Improve agent stream stability by preventing unnecessary reconnections and correctly draining buffered events. 2025-12-13 20:21:30 +08:00
lintsinghua 4e4dd05ddb feat(agent): 增强漏洞发现处理流程和前端兼容性
- 后端添加对旧事件类型'finding'的兼容支持
- 改进漏洞发现标准化和去重逻辑
- 新增PoC生成要求和相关字段
- 优化沙箱配置初始化流程
- 前端添加ADD_FINDING操作和状态管理
- 增强事件流处理和序列号过滤
- 改进历史事件加载和SSE连接逻辑
- 添加漏洞验证状态和PoC信息到报告
2025-12-13 18:45:05 +08:00
lintsinghua 6d98f29fa6 feat: 新增安全工具集成和漏洞知识库扩展
- 添加 Bandit 和 Safety 安全工具到依赖项
- 新增 CSRF、业务逻辑和开放重定向漏洞知识文档
- 实现安全工具一键安装脚本和文档
- 改进模式匹配工具支持直接文件扫描
- 增强遥测模块和 Agent 审计功能
- 修复验证节点中 findings 合并逻辑
- 优化前端 Agent 审计界面和状态展示
2025-12-13 12:35:03 +08:00
lintsinghua 3db20a3afb feat(agent): enhance error handling and project scope filtering
- Downgrade Python version from 3.13 to 3.11.12 for compatibility
- Improve empty LLM response handling with better diagnostics and retry logic in AnalysisAgent
- Add detailed logging for empty response retries with token count and iteration tracking
- Implement fallback result generation instead of immediate failure on consecutive empty responses
- Enhance stream error handling with partial content recovery and error message propagation
- Add comprehensive exception handling in stream_llm_call to prevent error suppression
- Implement project scope filtering to ensure consistent filtered views across Orchestrator and sub-agents
- Track filtered files and directories separately when target_files are specified
- Add scope_limited flag and scope_message to project structure for transparency
- Remove manual progress_percentage setting and rely on computed property for COMPLETED status
- Improve code comments with diagnostic markers (🔥) for critical sections
2025-12-12 16:36:39 +08:00
lintsinghua eed111c04d chore: reduce logging verbosity and clean up file formatting
- Change logger.info to logger.debug in agent_tasks.py streaming and tree endpoints
- Disable SQLAlchemy echo mode in database session configuration
- Suppress uvicorn access logs and LiteLLM INFO level logging in main application
- Remove LogViewer component and LogsPage from frontend
- Add trailing newlines to multiple backend configuration and model files
- Update frontend routing to remove logs page reference
- Improve application startup logging clarity by filtering verbose third-party logs
2025-12-12 15:50:48 +08:00
lintsinghua f05c0073e1 feat(agent): implement comprehensive agent architecture with knowledge base and persistence layer
- Add database migrations for agent checkpoints and tree node tracking
- Implement core agent execution framework with executor, state management, and message handling
- Create knowledge base system with framework-specific modules (Django, FastAPI, Flask, Express, React, Supabase)
- Add vulnerability knowledge modules covering authentication, cryptography, injection, XSS, XXE, SSRF, path traversal, deserialization, and race conditions
- Introduce new agent tools: thinking tool, reporting tool, and agent-specific utilities
- Implement LLM memory compression and prompt caching for improved performance
- Add agent registry and persistence layer for checkpoint management
- Refactor agent implementations (analysis, recon, verification, orchestrator) with enhanced capabilities
- Remove legacy agent implementations (analysis_v2, react_agent)
- Update API endpoints for agent task creation and project management
- Add frontend components for agent task creation and enhanced audit UI
- Consolidate agent service architecture with improved separation of concerns
- This refactoring provides a scalable foundation for multi-agent collaboration with knowledge-driven decision making and state persistence
2025-12-12 15:27:12 +08:00
lintsinghua 147dfbaf5e feat(agent): enhance streaming with in-memory event manager and fallback polling
- Implement dual-mode streaming: prioritize in-memory EventManager for running tasks with thinking_token support
- Add fallback to database polling for completed tasks without thinking_token replay capability
- Introduce SSE event formatter utility for consistent event serialization across streaming modes
- Add 10ms micro-delay for thinking_token events to ensure proper TCP packet separation and frontend incremental rendering
- Refactor stream_agent_with_thinking endpoint to support both runtime and historical event streaming
- Update event filtering logic to handle both in-memory and database event sources
- Improve logging with debug markers for thinking_token tracking and stream mode selection
- Optimize polling intervals: 0.3s for running tasks, 2.0s for completed tasks
- Reduce idle timeout from 10 minutes to 1 minute for completed task streams
- Update frontend useAgentStream hook to handle unified event format from dual-mode streaming
- Enhance AgentAudit UI to properly display streamed events from both sources
2025-12-12 10:39:32 +08:00
lintsinghua 70776ee5fd feat: Introduce structured agent collaboration with `TaskHandoff` and `analysis_v2` agent, updating core agent logic, tools, and audit UI. 2025-12-11 23:29:04 +08:00
lintsinghua 8938a8a3c9 feat(agent): enhance agent functionality with LLM-driven decision-making and event handling
- Introduce LLM-driven decision-making across various agents, allowing for dynamic adjustments based on real-time analysis.
- Implement new event types for LLM thinking, decisions, actions, and observations to enrich the event streaming experience.
- Update agent task responses to include additional metrics for better tracking of task progress and outcomes.
- Refactor UI components to highlight LLM-related events and improve user interaction during audits.
- Enhance API endpoints to support new event structures and improve overall error handling.
2025-12-11 21:14:32 +08:00
lintsinghua 9bc114af1f feat(agent): implement Agent audit module with LangGraph integration
- Introduce new Agent audit functionality for autonomous code security analysis and vulnerability verification.
- Add API endpoints for managing Agent tasks and configurations.
- Implement UI components for Agent mode selection and embedding model configuration.
- Enhance the overall architecture with a focus on RAG (Retrieval-Augmented Generation) for improved code semantic search.
- Create a sandbox environment for secure execution of vulnerability tests.
- Update documentation to include details on the new Agent audit features and usage instructions.
2025-12-11 19:09:10 +08:00