Commit Graph

15 Commits

Author SHA1 Message Date
lintsinghua 4e4dd05ddb feat(agent): 增强漏洞发现处理流程和前端兼容性
- 后端添加对旧事件类型'finding'的兼容支持
- 改进漏洞发现标准化和去重逻辑
- 新增PoC生成要求和相关字段
- 优化沙箱配置初始化流程
- 前端添加ADD_FINDING操作和状态管理
- 增强事件流处理和序列号过滤
- 改进历史事件加载和SSE连接逻辑
- 添加漏洞验证状态和PoC信息到报告
2025-12-13 18:45:05 +08:00
lintsinghua 6d98f29fa6 feat: 新增安全工具集成和漏洞知识库扩展
- 添加 Bandit 和 Safety 安全工具到依赖项
- 新增 CSRF、业务逻辑和开放重定向漏洞知识文档
- 实现安全工具一键安装脚本和文档
- 改进模式匹配工具支持直接文件扫描
- 增强遥测模块和 Agent 审计功能
- 修复验证节点中 findings 合并逻辑
- 优化前端 Agent 审计界面和状态展示
2025-12-13 12:35:03 +08:00
lintsinghua 31dc476015 feat: Improve streaming LLM token usage reporting by adding input estimation, requesting usage via `stream_options`, and providing fallback estimation. 2025-12-12 16:30:57 +08:00
lintsinghua eed111c04d chore: reduce logging verbosity and clean up file formatting
- Change logger.info to logger.debug in agent_tasks.py streaming and tree endpoints
- Disable SQLAlchemy echo mode in database session configuration
- Suppress uvicorn access logs and LiteLLM INFO level logging in main application
- Remove LogViewer component and LogsPage from frontend
- Add trailing newlines to multiple backend configuration and model files
- Update frontend routing to remove logs page reference
- Improve application startup logging clarity by filtering verbose third-party logs
2025-12-12 15:50:48 +08:00
lintsinghua f05c0073e1 feat(agent): implement comprehensive agent architecture with knowledge base and persistence layer
- Add database migrations for agent checkpoints and tree node tracking
- Implement core agent execution framework with executor, state management, and message handling
- Create knowledge base system with framework-specific modules (Django, FastAPI, Flask, Express, React, Supabase)
- Add vulnerability knowledge modules covering authentication, cryptography, injection, XSS, XXE, SSRF, path traversal, deserialization, and race conditions
- Introduce new agent tools: thinking tool, reporting tool, and agent-specific utilities
- Implement LLM memory compression and prompt caching for improved performance
- Add agent registry and persistence layer for checkpoint management
- Refactor agent implementations (analysis, recon, verification, orchestrator) with enhanced capabilities
- Remove legacy agent implementations (analysis_v2, react_agent)
- Update API endpoints for agent task creation and project management
- Add frontend components for agent task creation and enhanced audit UI
- Consolidate agent service architecture with improved separation of concerns
- This refactoring provides a scalable foundation for multi-agent collaboration with knowledge-driven decision making and state persistence
2025-12-12 15:27:12 +08:00
lintsinghua 70776ee5fd feat: Introduce structured agent collaboration with `TaskHandoff` and `analysis_v2` agent, updating core agent logic, tools, and audit UI. 2025-12-11 23:29:04 +08:00
lintsinghua 58c918f557 feat(agent): implement streaming support for agent events and enhance UI components
- Introduce streaming capabilities for agent events, allowing real-time updates during audits.
- Add new hooks for managing agent stream events in React components.
- Enhance the AgentAudit page to display LLM thinking processes and tool call details in real-time.
- Update API endpoints to support streaming event data and improve error handling.
- Refactor UI components for better organization and user experience during audits.
2025-12-11 20:33:46 +08:00
lintsinghua 9bc114af1f feat(agent): implement Agent audit module with LangGraph integration
- Introduce new Agent audit functionality for autonomous code security analysis and vulnerability verification.
- Add API endpoints for managing Agent tasks and configurations.
- Implement UI components for Agent mode selection and embedding model configuration.
- Enhance the overall architecture with a focus on RAG (Retrieval-Augmented Generation) for improved code semantic search.
- Create a sandbox environment for secure execution of vulnerability tests.
- Update documentation to include details on the new Agent audit features and usage instructions.
2025-12-11 19:09:10 +08:00
lintsinghua 4f0e8a2982 refactor(llm): simplify model name formatting logic in LiteLLMAdapter
- Remove redundant check for CUSTOM_BASE_URL_PROVIDERS
- Consolidate model name prefix logic into single code path
- Move prefix retrieval after model name validation
- Improve code clarity by eliminating unnecessary conditional branches
- Maintain backward compatibility with existing model name formats
2025-12-09 21:13:14 +08:00
lintsinghua cd80517f2d fix(llm): add debug logging for custom API base URL configuration
- Add debug print statement to log custom API base URL when configured
- Improves troubleshooting and visibility into LiteLLM adapter initialization
- Helps developers verify correct API endpoint configuration during runtime
2025-12-06 20:59:42 +08:00
lintsinghua 6fd305eac9 fix: 修复多个问题
- 修复创建ZIP项目时缺少source_type字段的问题
- 修复LiteLLM模型名称被错误解析为effort参数的问题
- 修复登录/注册页面无法正确显示验证错误的问题
- 添加Windows导出PDF需要GTK依赖的说明文档
2025-12-04 16:54:15 +08:00
lintsinghua 7091f891d1 feat(llm): enhance LLM connection testing with improved error handling and adapter instantiation
- Bypass LLMFactory cache during connection tests to ensure fresh API calls with latest configuration
- Directly instantiate native adapters (Baidu, Minimax, Doubao) and LiteLLM adapter based on provider type
- Add comprehensive error handling in LiteLLM adapter with specific exception catching for authentication, rate limiting, and connection errors
- Implement user-friendly error messages for common failure scenarios (invalid API key, authentication failure, timeout, connection issues)
- Add response validation to detect and report empty API responses
- Disable LiteLLM internal caching to guarantee actual API calls during testing
- Update available models list with 2025 latest models across all providers (Gemini, OpenAI, Claude, Qwen, DeepSeek, etc.)
- Improve error message clarity and debugging information in config endpoint
2025-11-28 16:53:01 +08:00
lintsinghua 22c528acf1 refactor(llm): consolidate LLM adapters with LiteLLM unified layer
- Replace individual adapter implementations (OpenAI, Claude, Gemini, DeepSeek, Qwen, Zhipu, Moonshot, Ollama) with unified LiteLLM adapter
- Keep native adapters for providers with special API formats (Baidu, MiniMax, Doubao)
- Update LLM factory to route requests through LiteLLM for supported providers
- Add test-llm endpoint to validate LLM connections with configurable timeout and token limits
- Add get-llm-providers endpoint to retrieve supported providers and their configurations
- Update config.py to ignore extra environment variables (VITE_* frontend variables)
- Refactor Baidu adapter to use new complete() method signature and improve error handling
- Update pyproject.toml dependencies to include litellm package
- Update env.example with new configuration options
- Simplify adapter initialization and reduce code duplication across multiple provider implementations
2025-11-28 16:41:39 +08:00
lintsinghua 7d1925db66 feat: Refactor frontend layout with new sidebar and i18n, update backend LLM adapters, and adjust database models. 2025-11-27 18:01:57 +08:00
lintsinghua 6ce5b3c6c1 refactor: 重构项目结构,将前端和后端代码分离到独立目录
- 将前端代码移动到 frontend/ 目录
- 将后端代码移动到 backend/ 目录
- 更新 .gitignore 以包含 Python 和前端构建产物
- 修复 LLM JSON 解析问题,增强错误处理
- 修复前端配置默认值,改为从后端获取
- 删除 AdminDashboard 中的数据库信息和统计卡片
- 完善系统配置管理,支持从后端获取默认配置
2025-11-26 21:11:12 +08:00