""" 代码索引器 将代码分块并索引到向量数据库 🔥 v2.0 改进: - 支持嵌入模型变更检测和自动重建 - 支持增量索引更新(基于文件 hash) - 支持索引版本控制和状态查询 """ import os import asyncio import logging import hashlib import time from typing import List, Dict, Any, Optional, AsyncGenerator, Callable, Set, Tuple from pathlib import Path from dataclasses import dataclass, field from enum import Enum import json import fnmatch from .splitter import CodeSplitter, CodeChunk from .embeddings import EmbeddingService logger = logging.getLogger(__name__) # 索引版本号(当索引格式变化时递增) INDEX_VERSION = "2.0" # 支持的文本文件扩展名 TEXT_EXTENSIONS = { # 核心语言 ".py", ".js", ".ts", ".tsx", ".jsx", ".java", ".go", ".rs", ".cpp", ".c", ".h", ".cc", ".hh", ".hpp", ".hxx", ".cs", ".php", ".rb", ".kt", ".swift", ".dart", ".scala", ".sc", ".groovy", ".ktm", ".kts", # .NET ".cshtml", ".vb", ".fs", ".fsi", ".fsx", ".sln", ".csproj", ".vbproj", ".fsproj", ".config", ".asax", ".master", ".ascx", ".asmx", ".svc", # 数据与配置 ".json", ".yml", ".yaml", ".toml", ".xml", ".properties", ".conf", ".ini", # 脚本与命令 ".sh", ".bash", ".zsh", ".fish", ".ps1", ".bat", ".cmd", ".sql", ".pl", ".pm", ".t", # Web ".html", ".css", ".vue", ".svelte", ".md", ".proto", ".graphql", ".gql", ".prisma", ".sol", ".dockerfile", ".tf", ".hcl", ".tfvars", # 其他 ".lua", ".hs", ".lhs", ".clj", ".cljs", ".cljc", ".edn", ".ex", ".exs", ".erl", ".hrl", ".m", ".mm", ".r", ".rmd", ".properties" } # 排除的目录 EXCLUDE_DIRS = { # 构建与依赖 "node_modules", "vendor", "dist", "build", "target", "out", "bin", "obj", "bower_components", "packages", "pkg", "Pods", ".gradle", ".m2", "vendor/bundle", ".bundle", "jspm_packages", "typings", # 虚拟环境 "venv", "env", ".env", "virtualenv", ".venv", # IDE 与元数据 ".git", ".svn", ".hg", ".vscode", ".idea", ".vs", "TestResults", "_ReSharper.*", ".settings", ".project", ".classpath", ".metadata", # 缓存与日志 "__pycache__", ".pytest_cache", "coverage", "htmlcov", ".nyc_output", ".cache", ".next", ".nuxt", ".dart_tool", "htmlcov", "logs", "ipch", # 云与基础设施 ".aws-sam", ".serverless", ".terraform", ".terraform.d", "_site", # 其他 "__MACOSX", "extern", "externals", "third-party", "3rdparty" } # 排除的文件 EXCLUDE_FILES = { # 锁文件 (通常不索引,因为内容太长且无语义) "package-lock.json", "yarn.lock", "pnpm-lock.yaml", "Cargo.lock", "poetry.lock", "composer.lock", "Gemfile.lock", "gradle.lockfile", "mix.lock", "pnpm-workspace.yaml", "shrinkwrap.yaml", # 静态资源与二进制 "*.min.js", "*.min.css", "jquery.js", "jquery.min.js", "*.map", "*.pyc", "*.pyo", "*.pyd", "*.so", "*.dll", "*.exe", "*.o", "*.obj", "*.a", "*.lib", "*.jar", "*.war", "*.ear", "*.class", "*.svg", "*.ico", "*.woff*", "*.png", "*.jpg", "*.jpeg", "*.gif", # 系统与秘密 ".DS_Store", "thumbs.db", "desktop.ini", "*.pem", "*.crt", "*.key", # 临时与日志 "*.log", "*.bak", "*.swp", "*.tmp", "tags", # IDRE 与特定配置 "*.suo", "*.user", "*.sln.docstates", "*.vshost.*", "*.pdb", ".ruby-version", ".nvmrc" } class IndexUpdateMode(Enum): """索引更新模式""" FULL = "full" # 全量重建:删除旧索引,完全重新索引 INCREMENTAL = "incremental" # 增量更新:只更新变化的文件 SMART = "smart" # 智能模式:根据情况自动选择 @dataclass class IndexStatus: """索引状态信息""" collection_name: str exists: bool = False index_version: str = "" chunk_count: int = 0 file_count: int = 0 created_at: float = 0.0 updated_at: float = 0.0 embedding_provider: str = "" embedding_model: str = "" embedding_dimension: int = 0 project_hash: str = "" def to_dict(self) -> Dict[str, Any]: return { "collection_name": self.collection_name, "exists": self.exists, "index_version": self.index_version, "chunk_count": self.chunk_count, "file_count": self.file_count, "created_at": self.created_at, "updated_at": self.updated_at, "embedding_provider": self.embedding_provider, "embedding_model": self.embedding_model, "embedding_dimension": self.embedding_dimension, "project_hash": self.project_hash, } @dataclass class IndexingProgress: """索引进度""" total_files: int = 0 processed_files: int = 0 total_chunks: int = 0 indexed_chunks: int = 0 current_file: str = "" errors: List[str] = None # 🔥 新增:增量更新统计 added_files: int = 0 updated_files: int = 0 deleted_files: int = 0 skipped_files: int = 0 update_mode: str = "full" # 🔥 新增:状态消息(用于前端显示) status_message: str = "" def __post_init__(self): if self.errors is None: self.errors = [] @property def progress_percentage(self) -> float: if self.total_files == 0: return 0.0 return (self.processed_files / self.total_files) * 100 @dataclass class IndexingResult: """索引结果""" success: bool total_files: int indexed_files: int total_chunks: int errors: List[str] collection_name: str class VectorStore: """向量存储抽象基类""" async def initialize(self): """初始化存储""" pass async def add_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """添加文档""" raise NotImplementedError async def upsert_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """更新或插入文档""" raise NotImplementedError async def delete_by_file_path(self, file_path: str) -> int: """删除指定文件的所有文档,返回删除数量""" raise NotImplementedError async def delete_by_ids(self, ids: List[str]) -> int: """删除指定 ID 的文档""" raise NotImplementedError async def query( self, query_embedding: List[float], n_results: int = 10, where: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """查询""" raise NotImplementedError async def delete_collection(self): """删除集合""" raise NotImplementedError async def get_count(self) -> int: """获取文档数量""" raise NotImplementedError async def get_all_file_paths(self) -> Set[str]: """获取所有已索引的文件路径""" raise NotImplementedError async def get_file_hashes(self) -> Dict[str, str]: """获取所有文件的 hash 映射 {file_path: hash}""" raise NotImplementedError def get_collection_metadata(self) -> Dict[str, Any]: """获取 collection 元数据""" raise NotImplementedError class ChromaVectorStore(VectorStore): """ Chroma 向量存储 🔥 v2.0 改进: - 支持 embedding 配置变更检测 - 支持增量更新(upsert、delete) - 支持文件级别的索引管理 """ def __init__( self, collection_name: str, persist_directory: Optional[str] = None, embedding_config: Optional[Dict[str, Any]] = None, ): self.collection_name = collection_name self.persist_directory = persist_directory self.embedding_config = embedding_config or {} self._client = None self._collection = None self._is_new_collection = False async def initialize(self, force_recreate: bool = False): """ 初始化 Chroma Args: force_recreate: 是否强制重建 collection """ try: import chromadb from chromadb.config import Settings if self.persist_directory: self._client = chromadb.PersistentClient( path=self.persist_directory, settings=Settings(anonymized_telemetry=False), ) else: self._client = chromadb.Client( settings=Settings(anonymized_telemetry=False), ) # 检查 collection 是否存在 existing_collections = [c.name for c in self._client.list_collections()] collection_exists = self.collection_name in existing_collections # 如果需要强制重建,先删除 if force_recreate and collection_exists: logger.info(f"🗑️ 强制重建: 删除旧 collection '{self.collection_name}'") self._client.delete_collection(name=self.collection_name) collection_exists = False # 构建 collection 元数据 current_time = time.time() collection_metadata = { "hnsw:space": "cosine", "index_version": INDEX_VERSION, } if self.embedding_config: collection_metadata["embedding_provider"] = self.embedding_config.get("provider", "openai") collection_metadata["embedding_model"] = self.embedding_config.get("model", "text-embedding-3-small") collection_metadata["embedding_dimension"] = self.embedding_config.get("dimension", 1536) if self.embedding_config.get("base_url"): collection_metadata["embedding_base_url"] = self.embedding_config.get("base_url") if collection_exists: # 获取现有 collection self._collection = self._client.get_collection(name=self.collection_name) self._is_new_collection = False logger.info(f"📂 获取现有 collection '{self.collection_name}'") else: # 创建新 collection collection_metadata["created_at"] = current_time collection_metadata["updated_at"] = current_time self._collection = self._client.create_collection( name=self.collection_name, metadata=collection_metadata, ) self._is_new_collection = True logger.info(f"✨ 创建新 collection '{self.collection_name}'") except ImportError: raise ImportError("chromadb is required. Install with: pip install chromadb") @property def is_new_collection(self) -> bool: """是否是新创建的 collection""" return self._is_new_collection def get_embedding_config(self) -> Dict[str, Any]: """获取 collection 的 embedding 配置""" if not self._collection: return {} metadata = self._collection.metadata or {} return { "provider": metadata.get("embedding_provider"), "model": metadata.get("embedding_model"), "dimension": metadata.get("embedding_dimension"), "base_url": metadata.get("embedding_base_url"), } def get_collection_metadata(self) -> Dict[str, Any]: """获取 collection 完整元数据""" if not self._collection: return {} return dict(self._collection.metadata or {}) def _clean_metadatas(self, metadatas: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """清理元数据,确保符合 Chroma 要求""" cleaned_metadatas = [] for meta in metadatas: cleaned = {} for k, v in meta.items(): if isinstance(v, (str, int, float, bool)): cleaned[k] = v elif isinstance(v, list): cleaned[k] = json.dumps(v) elif v is not None: cleaned[k] = str(v) cleaned_metadatas.append(cleaned) return cleaned_metadatas async def add_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """添加文档到 Chroma""" if not ids: return cleaned_metadatas = self._clean_metadatas(metadatas) # 分批添加(Chroma 批次限制) batch_size = 500 for i in range(0, len(ids), batch_size): batch_ids = ids[i:i + batch_size] batch_embeddings = embeddings[i:i + batch_size] batch_documents = documents[i:i + batch_size] batch_metadatas = cleaned_metadatas[i:i + batch_size] await asyncio.to_thread( self._collection.add, ids=batch_ids, embeddings=batch_embeddings, documents=batch_documents, metadatas=batch_metadatas, ) async def upsert_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """更新或插入文档(用于增量更新)""" if not ids: return cleaned_metadatas = self._clean_metadatas(metadatas) # 分批 upsert batch_size = 500 for i in range(0, len(ids), batch_size): batch_ids = ids[i:i + batch_size] batch_embeddings = embeddings[i:i + batch_size] batch_documents = documents[i:i + batch_size] batch_metadatas = cleaned_metadatas[i:i + batch_size] await asyncio.to_thread( self._collection.upsert, ids=batch_ids, embeddings=batch_embeddings, documents=batch_documents, metadatas=batch_metadatas, ) async def delete_by_file_path(self, file_path: str) -> int: """删除指定文件的所有文档""" if not self._collection: return 0 try: # 查询该文件的所有文档 result = await asyncio.to_thread( self._collection.get, where={"file_path": file_path}, ) ids_to_delete = result.get("ids", []) if ids_to_delete: await asyncio.to_thread( self._collection.delete, ids=ids_to_delete, ) logger.debug(f"删除文件 '{file_path}' 的 {len(ids_to_delete)} 个文档") return len(ids_to_delete) except Exception as e: logger.warning(f"删除文件文档失败: {e}") return 0 async def delete_by_ids(self, ids: List[str]) -> int: """删除指定 ID 的文档""" if not self._collection or not ids: return 0 try: await asyncio.to_thread( self._collection.delete, ids=ids, ) return len(ids) except Exception as e: logger.warning(f"删除文档失败: {e}") return 0 async def query( self, query_embedding: List[float], n_results: int = 10, where: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """查询 Chroma""" result = await asyncio.to_thread( self._collection.query, query_embeddings=[query_embedding], n_results=n_results, where=where, include=["documents", "metadatas", "distances"], ) return { "ids": result["ids"][0] if result["ids"] else [], "documents": result["documents"][0] if result["documents"] else [], "metadatas": result["metadatas"][0] if result["metadatas"] else [], "distances": result["distances"][0] if result["distances"] else [], } async def delete_collection(self): """删除集合""" if self._client and self._collection: await asyncio.to_thread( self._client.delete_collection, name=self.collection_name, ) self._collection = None async def get_count(self) -> int: """获取文档数量""" if self._collection: return await asyncio.to_thread(self._collection.count) return 0 async def get_all_file_paths(self) -> Set[str]: """获取所有已索引的文件路径""" if not self._collection: return set() try: # 获取所有文档的元数据 # 🔥 FIX: Chroma 默认 limit 是 10,这里设置为一个较大的值以获取完整列表 result = await asyncio.to_thread( self._collection.get, include=["metadatas"], limit=10000, ) file_paths = set() for meta in result.get("metadatas", []): if meta and "file_path" in meta: file_paths.add(meta["file_path"]) return file_paths except Exception as e: logger.warning(f"获取文件路径失败: {e}") return set() async def get_file_hashes(self) -> Dict[str, str]: """获取所有文件的 hash 映射 {file_path: file_hash}""" if not self._collection: return {} try: # 🔥 FIX: Chroma 默认 limit 是 10,这里设置为一个较大的值以获取完整列表 result = await asyncio.to_thread( self._collection.get, include=["metadatas"], limit=10000, ) file_hashes = {} for meta in result.get("metadatas", []): if meta: file_path = meta.get("file_path") file_hash = meta.get("file_hash") if file_path and file_hash: # 同一文件可能有多个 chunk,hash 应该相同 file_hashes[file_path] = file_hash return file_hashes except Exception as e: logger.warning(f"获取文件 hash 失败: {e}") return {} async def update_collection_metadata(self, updates: Dict[str, Any]): """更新 collection 元数据""" if not self._collection: return try: current_metadata = dict(self._collection.metadata or {}) current_metadata.update(updates) current_metadata["updated_at"] = time.time() # Chroma 不支持直接更新元数据,需要通过修改 collection # 🔥 FIX: 不能在 modify 中传递 "hnsw:space",因为 Chroma 不支持在创建后修改距离函数 # 即使值相同也可能导致某些版本报错 modified_metadata = {k: v for k, v in current_metadata.items() if k != "hnsw:space"} # 这里我们使用 modify 方法 await asyncio.to_thread( self._collection.modify, metadata=modified_metadata, ) except Exception as e: logger.warning(f"更新 collection 元数据失败: {e}") class InMemoryVectorStore(VectorStore): """内存向量存储(用于测试或小项目)""" def __init__(self, collection_name: str, embedding_config: Optional[Dict[str, Any]] = None): self.collection_name = collection_name self.embedding_config = embedding_config or {} self._documents: Dict[str, Dict[str, Any]] = {} self._metadata: Dict[str, Any] = { "created_at": time.time(), "index_version": INDEX_VERSION, } self._is_new_collection = True async def initialize(self, force_recreate: bool = False): """初始化""" if force_recreate: self._documents.clear() self._is_new_collection = True logger.info(f"InMemory vector store '{self.collection_name}' initialized") @property def is_new_collection(self) -> bool: return self._is_new_collection def get_embedding_config(self) -> Dict[str, Any]: return self.embedding_config def get_collection_metadata(self) -> Dict[str, Any]: return self._metadata async def add_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """添加文档""" for id_, emb, doc, meta in zip(ids, embeddings, documents, metadatas): self._documents[id_] = { "embedding": emb, "document": doc, "metadata": meta, } self._is_new_collection = False async def upsert_documents( self, ids: List[str], embeddings: List[List[float]], documents: List[str], metadatas: List[Dict[str, Any]], ): """更新或插入文档""" await self.add_documents(ids, embeddings, documents, metadatas) async def delete_by_file_path(self, file_path: str) -> int: """删除指定文件的所有文档""" ids_to_delete = [ id_ for id_, data in self._documents.items() if data["metadata"].get("file_path") == file_path ] for id_ in ids_to_delete: del self._documents[id_] return len(ids_to_delete) async def delete_by_ids(self, ids: List[str]) -> int: """删除指定 ID 的文档""" count = 0 for id_ in ids: if id_ in self._documents: del self._documents[id_] count += 1 return count async def query( self, query_embedding: List[float], n_results: int = 10, where: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """查询(使用余弦相似度)""" import math def cosine_similarity(a: List[float], b: List[float]) -> float: dot = sum(x * y for x, y in zip(a, b)) norm_a = math.sqrt(sum(x * x for x in a)) norm_b = math.sqrt(sum(x * x for x in b)) if norm_a == 0 or norm_b == 0: return 0.0 return dot / (norm_a * norm_b) results = [] for id_, data in self._documents.items(): # 应用过滤条件 if where: match = True for k, v in where.items(): if data["metadata"].get(k) != v: match = False break if not match: continue similarity = cosine_similarity(query_embedding, data["embedding"]) results.append({ "id": id_, "document": data["document"], "metadata": data["metadata"], "distance": 1 - similarity, }) results.sort(key=lambda x: x["distance"]) results = results[:n_results] return { "ids": [r["id"] for r in results], "documents": [r["document"] for r in results], "metadatas": [r["metadata"] for r in results], "distances": [r["distance"] for r in results], } async def delete_collection(self): """删除集合""" self._documents.clear() async def get_count(self) -> int: """获取文档数量""" return len(self._documents) async def get_all_file_paths(self) -> Set[str]: """获取所有已索引的文件路径""" return { data["metadata"].get("file_path") for data in self._documents.values() if data["metadata"].get("file_path") } async def get_file_hashes(self) -> Dict[str, str]: """获取所有文件的 hash 映射""" file_hashes = {} for data in self._documents.values(): file_path = data["metadata"].get("file_path") file_hash = data["metadata"].get("file_hash") if file_path and file_hash: file_hashes[file_path] = file_hash return file_hashes async def update_collection_metadata(self, updates: Dict[str, Any]): """更新 collection 元数据""" self._metadata.update(updates) self._metadata["updated_at"] = time.time() class CodeIndexer: """ 代码索引器 将代码文件分块、嵌入并索引到向量数据库 🔥 v2.0 改进: - 自动检测 embedding 模型变更并重建索引 - 支持增量索引更新(基于文件 hash) - 支持索引状态查询 """ def __init__( self, collection_name: str, embedding_service: Optional[EmbeddingService] = None, vector_store: Optional[VectorStore] = None, splitter: Optional[CodeSplitter] = None, persist_directory: Optional[str] = None, ): """ 初始化索引器 Args: collection_name: 向量集合名称 embedding_service: 嵌入服务 vector_store: 向量存储 splitter: 代码分块器 persist_directory: 持久化目录 """ self.collection_name = collection_name self.embedding_service = embedding_service or EmbeddingService() self.splitter = splitter or CodeSplitter() self.persist_directory = persist_directory # 从 embedding_service 获取配置 self.embedding_config = { "provider": getattr(self.embedding_service, 'provider', None) or 'openai', "model": getattr(self.embedding_service, 'model', None) or 'text-embedding-3-small', "dimension": getattr(self.embedding_service, 'dimension', 1536), "base_url": getattr(self.embedding_service, 'base_url', None), } # 创建向量存储 if vector_store: self.vector_store = vector_store else: try: self.vector_store = ChromaVectorStore( collection_name=collection_name, persist_directory=persist_directory, embedding_config=self.embedding_config, ) except ImportError: logger.warning("Chroma not available, using in-memory store") self.vector_store = InMemoryVectorStore( collection_name=collection_name, embedding_config=self.embedding_config, ) self._initialized = False self._needs_rebuild = False self._rebuild_reason = "" @staticmethod def _read_file_sync(file_path: str) -> str: """ 同步读取文件内容(用于 asyncio.to_thread 包装) Args: file_path: 文件路径 Returns: 文件内容 """ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: return f.read() async def initialize(self, force_rebuild: bool = False) -> Tuple[bool, str]: """ 初始化索引器,检测是否需要重建索引 Args: force_rebuild: 是否强制重建 Returns: (needs_rebuild, reason) - 是否需要重建及原因 """ # 如果 force_rebuild 为真,或者尚未初始化且 _needs_rebuild 已通过某种方式置为真 should_recreate = force_rebuild or (not self._initialized and self._needs_rebuild) # 先初始化 vector_store await self.vector_store.initialize(force_recreate=should_recreate) if should_recreate: self._needs_rebuild = True self._rebuild_reason = "强制重建" self._initialized = True return True, self._rebuild_reason # 检查是否需要重建 self._needs_rebuild, self._rebuild_reason = await self._check_rebuild_needed() # 如果自动检测到需要重建,则再次初始化并强制重建 if self._needs_rebuild: logger.info(f"🔄 需要重建索引: {self._rebuild_reason}") await self.vector_store.initialize(force_recreate=True) self._initialized = True return self._needs_rebuild, self._rebuild_reason async def _check_rebuild_needed(self) -> Tuple[bool, str]: """ 检查是否需要重建索引 Returns: (needs_rebuild, reason) """ # 如果是新 collection,不需要重建(因为本来就是空的) if hasattr(self.vector_store, 'is_new_collection') and self.vector_store.is_new_collection: return False, "" # 获取现有 collection 的配置 stored_config = self.vector_store.get_embedding_config() stored_metadata = self.vector_store.get_collection_metadata() # 检查索引版本 stored_version = stored_metadata.get("index_version", "1.0") if stored_version != INDEX_VERSION: return True, f"索引版本变更: {stored_version} -> {INDEX_VERSION}" # 检查 embedding 提供商 stored_provider = stored_config.get("provider") current_provider = self.embedding_config.get("provider") if stored_provider and current_provider and stored_provider != current_provider: return True, f"Embedding 提供商变更: {stored_provider} -> {current_provider}" # 检查 embedding 模型 stored_model = stored_config.get("model") current_model = self.embedding_config.get("model") if stored_model and current_model and stored_model != current_model: return True, f"Embedding 模型变更: {stored_model} -> {current_model}" # 检查维度 stored_dimension = stored_config.get("dimension") current_dimension = self.embedding_config.get("dimension") # 🔥 如果 metadata 中没有维度,尝试从 sample 中检测 if not stored_dimension: stored_dimension = await self._detect_actual_dimension() if stored_dimension: logger.debug(f"🔍 从 sample 检测到实际维度: {stored_dimension}") if stored_dimension and current_dimension and int(stored_dimension) != int(current_dimension): return True, f"Embedding 维度变更: {stored_dimension} -> {current_dimension}" return False, "" async def _detect_actual_dimension(self) -> Optional[int]: """从既存向量中检测实际维度""" try: if hasattr(self.vector_store, '_collection') and self.vector_store._collection: peek = await asyncio.to_thread(self.vector_store._collection.peek, limit=1) embeddings = peek.get("embeddings") if embeddings and len(embeddings) > 0: return len(embeddings[0]) except Exception: pass return None async def get_index_status(self) -> IndexStatus: """获取索引状态""" await self.initialize() metadata = self.vector_store.get_collection_metadata() embedding_config = self.vector_store.get_embedding_config() chunk_count = await self.vector_store.get_count() file_paths = await self.vector_store.get_all_file_paths() return IndexStatus( collection_name=self.collection_name, exists=chunk_count > 0, index_version=metadata.get("index_version", ""), chunk_count=chunk_count, file_count=len(file_paths), created_at=metadata.get("created_at", 0), updated_at=metadata.get("updated_at", 0), embedding_provider=embedding_config.get("provider", ""), embedding_model=embedding_config.get("model", ""), embedding_dimension=embedding_config.get("dimension", 0), project_hash=metadata.get("project_hash", ""), ) async def smart_index_directory( self, directory: str, exclude_patterns: Optional[List[str]] = None, include_patterns: Optional[List[str]] = None, update_mode: IndexUpdateMode = IndexUpdateMode.SMART, progress_callback: Optional[Callable[[IndexingProgress], None]] = None, embedding_progress_callback: Optional[Callable[[int, int], None]] = None, cancel_check: Optional[Callable[[], bool]] = None, ) -> AsyncGenerator[IndexingProgress, None]: """ 智能索引目录 Args: directory: 目录路径 exclude_patterns: 排除模式 include_patterns: 包含模式(🔥 用于限制只索引指定文件) update_mode: 更新模式 progress_callback: 进度回调 embedding_progress_callback: 嵌入进度回调,接收 (processed, total) 参数 cancel_check: 取消检查函数,返回 True 表示应该取消 Yields: 索引进度 """ # 初始化并检查是否需要重建 needs_rebuild, rebuild_reason = await self.initialize(force_rebuild=(update_mode == IndexUpdateMode.FULL)) progress = IndexingProgress() exclude_patterns = exclude_patterns or [] # 确定实际的更新模式 if update_mode == IndexUpdateMode.SMART: # 🔥 FIX: 如果是新 collection,即使没有配置变更,也要用 FULL 模式 is_new = hasattr(self.vector_store, 'is_new_collection') and self.vector_store.is_new_collection if needs_rebuild or is_new: actual_mode = IndexUpdateMode.FULL reason = rebuild_reason if needs_rebuild else "新集合" logger.info(f"🔄 智能模式: 选择全量重建 (原因: {reason})") else: actual_mode = IndexUpdateMode.INCREMENTAL logger.info("📝 智能模式: 选择增量更新") else: actual_mode = update_mode progress.update_mode = actual_mode.value if actual_mode == IndexUpdateMode.FULL: # 全量重建 async for p in self._full_index(directory, exclude_patterns, include_patterns, progress, progress_callback, embedding_progress_callback, cancel_check): yield p else: # 增量更新 async for p in self._incremental_index(directory, exclude_patterns, include_patterns, progress, progress_callback, embedding_progress_callback, cancel_check): yield p async def _full_index( self, directory: str, exclude_patterns: List[str], include_patterns: Optional[List[str]], progress: IndexingProgress, progress_callback: Optional[Callable[[IndexingProgress], None]], embedding_progress_callback: Optional[Callable[[int, int], None]] = None, cancel_check: Optional[Callable[[], bool]] = None, ) -> AsyncGenerator[IndexingProgress, None]: """全量索引""" logger.info("🔄 开始全量索引...") # 收集文件 files = self._collect_files(directory, exclude_patterns, include_patterns) progress.total_files = len(files) logger.info(f"📁 发现 {len(files)} 个文件待索引") # 🔥 详细打印所有待索引的文件名,方便调试 (满足用户需求) if files: relative_files = [os.path.relpath(f, directory) for f in files] logger.info(f"📄 待索引文件列表: {', '.join(sorted(relative_files))}") yield progress semaphore = asyncio.Semaphore(10) # 降低并行度以平衡 CPU 和内存 file_hashes: Dict[str, str] = {} async def process_file(file_path: str): async with semaphore: try: relative_path = os.path.relpath(file_path, directory) progress.current_file = relative_path # 异步读取文件 content = await asyncio.to_thread(self._read_file_sync, file_path) if not content.strip(): progress.processed_files += 1 progress.skipped_files += 1 return # 计算文件 hash file_hash = hashlib.md5(content.encode()).hexdigest() file_hashes[relative_path] = file_hash # 异步分块 if len(content) > 500000: content = content[:500000] chunks = await self.splitter.split_file_async(content, relative_path) for chunk in chunks: chunk.metadata["file_hash"] = file_hash # 立即索引该文件的代码块 (实现逐文件更新进度) if chunks: await self._index_chunks(chunks, progress, use_upsert=False, embedding_progress_callback=embedding_progress_callback, cancel_check=cancel_check) progress.total_chunks += len(chunks) progress.indexed_chunks += len(chunks) progress.processed_files += 1 progress.added_files += 1 if progress_callback: progress_callback(progress) except Exception as e: logger.warning(f"处理文件失败 {file_path}: {e}") progress.errors.append(f"{file_path}: {str(e)}") progress.processed_files += 1 # 执行全量索引 tasks = [process_file(f) for f in files] # 🔥 使用 as_completed 实现真正的逐文件进度更新 for task in asyncio.as_completed(tasks): await task yield progress # 更新 collection 元数据 project_hash = hashlib.md5(json.dumps(sorted(file_hashes.items())).encode()).hexdigest() await self.vector_store.update_collection_metadata({ "project_hash": project_hash, "file_count": len(file_hashes), }) logger.info(f"✅ 全量索引完成: {progress.added_files} 个文件, {progress.indexed_chunks} 个代码块") yield progress async def _incremental_index( self, directory: str, exclude_patterns: List[str], include_patterns: Optional[List[str]], progress: IndexingProgress, progress_callback: Optional[Callable[[IndexingProgress], None]], embedding_progress_callback: Optional[Callable[[int, int], None]] = None, cancel_check: Optional[Callable[[], bool]] = None, ) -> AsyncGenerator[IndexingProgress, None]: """增量索引""" logger.info("📝 开始增量索引...") # 获取已索引文件的 hash indexed_file_hashes = await self.vector_store.get_file_hashes() indexed_files = set(indexed_file_hashes.keys()) logger.debug(f"📂 已索引文件数: {len(indexed_files)}, file_hashes: {list(indexed_file_hashes.keys())[:5]}...") # 收集当前文件 current_files = self._collect_files(directory, exclude_patterns, include_patterns) current_file_map: Dict[str, str] = {} # relative_path -> absolute_path for file_path in current_files: relative_path = os.path.relpath(file_path, directory) current_file_map[relative_path] = file_path current_file_set = set(current_file_map.keys()) logger.debug(f"📁 当前文件数: {len(current_file_set)}, 示例: {list(current_file_set)[:5]}...") # 计算差异 files_to_add = current_file_set - indexed_files files_to_delete = indexed_files - current_file_set files_to_check = current_file_set & indexed_files logger.debug(f"� 差异分析: 交集={len(files_to_check)}, 新增候选={len(files_to_add)}, 删除候选={len(files_to_delete)}") # 检查需要更新的文件(hash 变化) files_to_update: Set[str] = set() for relative_path in files_to_check: file_path = current_file_map[relative_path] try: # 异步读取文件,避免阻塞事件循环 content = await asyncio.to_thread( self._read_file_sync, file_path ) current_hash = hashlib.md5(content.encode()).hexdigest() if current_hash != indexed_file_hashes.get(relative_path): files_to_update.add(relative_path) except Exception: files_to_update.add(relative_path) # 只有当指定了 include_patterns 时,才需要特殊处理 files_to_delete # 如果当前扫描是限定范围的(例如只审计某几个文件),不应该删除范围外的已有索引 if include_patterns: actual_files_to_delete = set() for rel_path in files_to_delete: filename = os.path.basename(rel_path) is_in_scope = False for pattern in include_patterns: if fnmatch.fnmatch(rel_path, pattern) or fnmatch.fnmatch(filename, pattern): is_in_scope = True break if is_in_scope: actual_files_to_delete.add(rel_path) if len(actual_files_to_delete) < len(files_to_delete): logger.debug(f"Scope limited: reducing files_to_delete from {len(files_to_delete)} to {len(actual_files_to_delete)}") files_to_delete = actual_files_to_delete total_operations = len(files_to_add) + len(files_to_delete) + len(files_to_update) progress.total_files = total_operations logger.info(f"📊 增量更新摘要: 新增 {len(files_to_add)}, 删除 {len(files_to_delete)}, 更新 {len(files_to_update)}") # 🔥 详细打印新增、更新和删除的文件名,方便调试 (满足用户需求) if files_to_add: logger.info(f"🆕 新增文件 ({len(files_to_add)}): {', '.join(sorted(list(files_to_add)))}") if files_to_update: logger.info(f"🔄 更新文件 ({len(files_to_update)}): {', '.join(sorted(list(files_to_update)))}") if files_to_delete: logger.info(f"🗑️ 删除文件 ({len(files_to_delete)}): {', '.join(sorted(list(files_to_delete)))}") yield progress # 删除已移除的文件 for relative_path in files_to_delete: progress.current_file = f"删除: {relative_path}" deleted_count = await self.vector_store.delete_by_file_path(relative_path) progress.deleted_files += 1 progress.processed_files += 1 logger.debug(f"🗑️ 删除文件 '{relative_path}' 的 {deleted_count} 个代码块") if progress_callback: progress_callback(progress) yield progress semaphore = asyncio.Semaphore(10) file_hashes: Dict[str, str] = dict(indexed_file_hashes) async def process_incremental_file(relative_path: str): async with semaphore: file_path = current_file_map[relative_path] progress.current_file = relative_path is_update = relative_path in files_to_update try: # 异步读取文件 content = await asyncio.to_thread(self._read_file_sync, file_path) if not content.strip(): progress.processed_files += 1 progress.skipped_files += 1 return # 如果是更新,先删除旧的 if is_update: await self.vector_store.delete_by_file_path(relative_path) # 计算文件 hash file_hash = hashlib.md5(content.encode()).hexdigest() file_hashes[relative_path] = file_hash # 限制文件大小 if len(content) > 500000: content = content[:500000] # 异步分块 chunks = await self.splitter.split_file_async(content, relative_path) # 为每个 chunk 添加 file_hash for chunk in chunks: chunk.metadata["file_hash"] = file_hash # 立即索引该文件 if chunks: await self._index_chunks(chunks, progress, use_upsert=True, embedding_progress_callback=embedding_progress_callback, cancel_check=cancel_check) progress.total_chunks += len(chunks) progress.indexed_chunks += len(chunks) progress.processed_files += 1 if is_update: progress.updated_files += 1 else: progress.added_files += 1 if progress_callback: progress_callback(progress) except Exception as e: logger.warning(f"处理文件失败 {file_path}: {e}") progress.errors.append(f"{file_path}: {str(e)}") progress.processed_files += 1 # 处理新增和更新的文件 files_to_process = files_to_add | files_to_update # 执行增量索引 tasks = [process_incremental_file(p) for p in files_to_process] # 🔥 使用 as_completed 实现真正的逐文件进度更新 for task in asyncio.as_completed(tasks): await task yield progress # 更新 collection 元数据 # 移除已删除文件的 hash for relative_path in files_to_delete: file_hashes.pop(relative_path, None) project_hash = hashlib.md5(json.dumps(sorted(file_hashes.items())).encode()).hexdigest() await self.vector_store.update_collection_metadata({ "project_hash": project_hash, "file_count": len(file_hashes), }) logger.info( f"✅ 增量索引完成: 新增 {progress.added_files}, " f"更新 {progress.updated_files}, 删除 {progress.deleted_files}" ) yield progress # 保留原有的 index_directory 方法作为兼容 async def index_directory( self, directory: str, exclude_patterns: Optional[List[str]] = None, include_patterns: Optional[List[str]] = None, progress_callback: Optional[Callable[[IndexingProgress], None]] = None, ) -> AsyncGenerator[IndexingProgress, None]: """ 索引目录(使用智能模式) Args: directory: 目录路径 exclude_patterns: 排除模式 include_patterns: 包含模式 progress_callback: 进度回调 Yields: 索引进度 """ async for progress in self.smart_index_directory( directory=directory, exclude_patterns=exclude_patterns, include_patterns=include_patterns, update_mode=IndexUpdateMode.SMART, progress_callback=progress_callback, ): yield progress async def index_files( self, files: List[Dict[str, str]], base_path: str = "", progress_callback: Optional[Callable[[IndexingProgress], None]] = None, ) -> AsyncGenerator[IndexingProgress, None]: """ 索引文件列表 Args: files: 文件列表 [{"path": "...", "content": "..."}] base_path: 基础路径 progress_callback: 进度回调 Yields: 索引进度 """ await self.initialize() progress = IndexingProgress() progress.total_files = len(files) all_chunks: List[CodeChunk] = [] for file_info in files: file_path = file_info.get("path", "") content = file_info.get("content", "") progress.current_file = file_path try: if not content.strip(): progress.processed_files += 1 progress.skipped_files += 1 continue # 计算文件 hash file_hash = hashlib.md5(content.encode()).hexdigest() # 限制文件大小 if len(content) > 500000: content = content[:500000] # 分块 chunks = self.splitter.split_file(content, file_path) # 为每个 chunk 添加 file_hash for chunk in chunks: chunk.metadata["file_hash"] = file_hash all_chunks.extend(chunks) progress.processed_files += 1 progress.added_files += 1 progress.total_chunks = len(all_chunks) if progress_callback: progress_callback(progress) yield progress except Exception as e: logger.warning(f"处理文件失败 {file_path}: {e}") progress.errors.append(f"{file_path}: {str(e)}") progress.processed_files += 1 # 批量嵌入和索引 if all_chunks: await self._index_chunks(all_chunks, progress, use_upsert=True) progress.indexed_chunks = len(all_chunks) yield progress async def _index_chunks( self, chunks: List[CodeChunk], progress: IndexingProgress, use_upsert: bool = False, embedding_progress_callback: Optional[Callable[[int, int], None]] = None, cancel_check: Optional[Callable[[], bool]] = None, ): """索引代码块 Args: chunks: 代码块列表 progress: 索引进度对象 use_upsert: 是否使用 upsert(增量更新) embedding_progress_callback: 嵌入进度回调 cancel_check: 取消检查函数,返回 True 表示应该取消 """ if not chunks: return # 去重:确保没有重复的 ID seen_ids: Set[str] = set() unique_chunks: List[CodeChunk] = [] for chunk in chunks: if chunk.id not in seen_ids: seen_ids.add(chunk.id) unique_chunks.append(chunk) else: logger.warning(f"跳过重复 ID 的代码块: {chunk.id} ({chunk.file_path}:{chunk.line_start})") if len(unique_chunks) < len(chunks): logger.info(f"🔄 去重: {len(chunks)} -> {len(unique_chunks)} 个代码块") chunks = unique_chunks # 准备嵌入文本 texts = [chunk.to_embedding_text() for chunk in chunks] logger.info(f"🔢 生成 {len(texts)} 个代码块的嵌入向量...") # 批量嵌入(带进度回调和取消检查) embeddings = await self.embedding_service.embed_batch( texts, batch_size=getattr(self.embedding_service, 'batch_size', 50), progress_callback=embedding_progress_callback, cancel_check=cancel_check, ) # 准备元数据 ids = [chunk.id for chunk in chunks] documents = [chunk.content for chunk in chunks] metadatas = [chunk.to_dict() for chunk in chunks] # 添加到向量存储 logger.info(f"💾 添加 {len(chunks)} 个代码块到向量存储...") if use_upsert: await self.vector_store.upsert_documents( ids=ids, embeddings=embeddings, documents=documents, metadatas=metadatas, ) else: await self.vector_store.add_documents( ids=ids, embeddings=embeddings, documents=documents, metadatas=metadatas, ) logger.info(f"✅ 索引 {len(chunks)} 个代码块成功") def _collect_files( self, directory: str, exclude_patterns: List[str], include_patterns: Optional[List[str]], ) -> List[str]: """收集需要索引的文件""" import fnmatch files = [] for root, dirs, filenames in os.walk(directory): # 过滤目录 dirs[:] = [d for d in dirs if d not in EXCLUDE_DIRS] for filename in filenames: # 检查扩展名 ext = os.path.splitext(filename)[1].lower() if ext not in TEXT_EXTENSIONS: continue # 检查排除文件 (支持通配符) should_skip_file = False for pattern in EXCLUDE_FILES: if fnmatch.fnmatch(filename, pattern): should_skip_file = True break if should_skip_file: continue # 排除疑似压缩过的文件 (通过行长度和内容分析) file_path = os.path.join(root, filename) try: if os.path.getsize(file_path) > 50000: # > 50KB with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: # 检查前 5 行,防止第一行是版权注释的情况 is_minified = False for _ in range(5): line = f.readline() if not line: break if len(line) > 1000: is_minified = True break if is_minified: logger.info(f"⏩ 跳过疑似压缩或非代码文件: {filename}") continue except Exception: pass relative_path = os.path.relpath(file_path, directory) # 检查排除模式 excluded = False for pattern in exclude_patterns: if fnmatch.fnmatch(relative_path, pattern) or fnmatch.fnmatch(filename, pattern): excluded = True break if excluded: continue # 检查包含模式 if include_patterns: included = False for pattern in include_patterns: if fnmatch.fnmatch(relative_path, pattern) or fnmatch.fnmatch(filename, pattern): included = True break if not included: continue files.append(file_path) return files async def get_chunk_count(self) -> int: """获取已索引的代码块数量""" await self.initialize() return await self.vector_store.get_count() async def clear(self): """清空索引""" await self.initialize() await self.vector_store.delete_collection() self._initialized = False async def delete_file(self, file_path: str) -> int: """ 删除指定文件的索引 Args: file_path: 文件路径 Returns: 删除的代码块数量 """ await self.initialize() return await self.vector_store.delete_by_file_path(file_path) async def rebuild(self, directory: str, **kwargs) -> AsyncGenerator[IndexingProgress, None]: """ 强制重建索引 Args: directory: 目录路径 **kwargs: 传递给 smart_index_directory 的其他参数 Yields: 索引进度 """ # 强制重新初始化 self._initialized = False await self.initialize(force_rebuild=True) async for progress in self.smart_index_directory( directory=directory, update_mode=IndexUpdateMode.FULL, **kwargs, ): yield progress