230 lines
4.5 KiB
Markdown
230 lines
4.5 KiB
Markdown
# DeepAudit Agent 审计功能部署清单
|
||
|
||
## 📋 生产部署前必须完成的检查
|
||
|
||
### 1. 环境依赖 ✅
|
||
|
||
```bash
|
||
# 后端依赖
|
||
cd backend
|
||
uv pip install chromadb litellm langchain langgraph
|
||
|
||
# 外部安全工具(可选但推荐)
|
||
pip install semgrep bandit safety
|
||
|
||
# 或者使用系统包管理器
|
||
brew install semgrep # macOS
|
||
apt install semgrep # Ubuntu
|
||
```
|
||
|
||
### 2. LLM 配置 ✅
|
||
|
||
在 `.env` 文件中配置:
|
||
|
||
```env
|
||
# LLM 配置(必须)
|
||
LLM_PROVIDER=openai # 或 azure, anthropic, ollama 等
|
||
LLM_MODEL=gpt-4o-mini # 推荐使用 gpt-4 系列
|
||
LLM_API_KEY=sk-xxx # 你的 API Key
|
||
LLM_BASE_URL= # 可选,自定义端点
|
||
|
||
# 嵌入模型配置(RAG 需要)
|
||
EMBEDDING_PROVIDER=openai
|
||
EMBEDDING_MODEL=text-embedding-3-small
|
||
```
|
||
|
||
### 3. 数据库迁移 ✅
|
||
|
||
```bash
|
||
cd backend
|
||
alembic upgrade head
|
||
```
|
||
|
||
确保以下表已创建:
|
||
- `agent_tasks`
|
||
- `agent_events`
|
||
- `agent_findings`
|
||
|
||
### 4. 向量数据库 ✅
|
||
|
||
```bash
|
||
# 创建向量数据库目录
|
||
mkdir -p /var/data/deepaudit/vector_db
|
||
|
||
# 在 .env 中配置
|
||
VECTOR_DB_PATH=/var/data/deepaudit/vector_db
|
||
```
|
||
|
||
### 5. Docker 沙箱(可选)
|
||
|
||
如果需要漏洞验证功能:
|
||
|
||
```bash
|
||
# 拉取沙箱镜像
|
||
docker pull python:3.11-slim
|
||
|
||
# 配置沙箱参数
|
||
SANDBOX_IMAGE=python:3.11-slim
|
||
SANDBOX_MEMORY_LIMIT=256m
|
||
SANDBOX_CPU_LIMIT=0.5
|
||
```
|
||
|
||
---
|
||
|
||
## 🔬 功能测试检查
|
||
|
||
### 测试 1: 基础流程
|
||
|
||
```bash
|
||
cd backend
|
||
PYTHONPATH=. uv run pytest tests/agent/ -v
|
||
```
|
||
|
||
预期结果:43 个测试全部通过
|
||
|
||
### 测试 2: LLM 连接
|
||
|
||
```bash
|
||
cd backend
|
||
PYTHONPATH=. uv run python -c "
|
||
import asyncio
|
||
from app.services.agent.graph.runner import LLMService
|
||
|
||
async def test():
|
||
llm = LLMService()
|
||
result = await llm.analyze_code('print(\"hello\")', 'python')
|
||
print('LLM 连接成功:', 'issues' in result)
|
||
|
||
asyncio.run(test())
|
||
"
|
||
```
|
||
|
||
### 测试 3: 外部工具
|
||
|
||
```bash
|
||
# 测试 Semgrep
|
||
semgrep --version
|
||
|
||
# 测试 Bandit
|
||
bandit --version
|
||
```
|
||
|
||
### 测试 4: 端到端测试
|
||
|
||
1. 启动后端:`cd backend && uv run uvicorn app.main:app --reload`
|
||
2. 启动前端:`cd frontend && npm run dev`
|
||
3. 创建一个项目并上传代码
|
||
4. 选择 "Agent 审计模式" 创建任务
|
||
5. 观察执行日志和发现
|
||
|
||
---
|
||
|
||
## ⚠️ 已知限制
|
||
|
||
| 限制 | 影响 | 解决方案 |
|
||
|------|------|---------|
|
||
| **LLM 成本** | 每次审计消耗 Token | 使用 gpt-4o-mini 降低成本 |
|
||
| **扫描时间** | 大项目需要较长时间 | 设置合理的超时时间 |
|
||
| **误报率** | AI 可能产生误报 | 启用验证阶段过滤 |
|
||
| **外部工具依赖** | 需要手动安装 | 提供 Docker 镜像 |
|
||
|
||
---
|
||
|
||
## 🚀 生产环境建议
|
||
|
||
### 1. 资源配置
|
||
|
||
```yaml
|
||
# Kubernetes 部署示例
|
||
resources:
|
||
limits:
|
||
memory: "2Gi"
|
||
cpu: "2"
|
||
requests:
|
||
memory: "1Gi"
|
||
cpu: "1"
|
||
```
|
||
|
||
### 2. 并发控制
|
||
|
||
```env
|
||
# 限制同时运行的任务数
|
||
MAX_CONCURRENT_AGENT_TASKS=3
|
||
AGENT_TASK_TIMEOUT=1800 # 30 分钟
|
||
```
|
||
|
||
### 3. 日志监控
|
||
|
||
```python
|
||
# 配置日志级别
|
||
LOG_LEVEL=INFO
|
||
# 启用 SQLAlchemy 日志(调试用)
|
||
SQLALCHEMY_ECHO=false
|
||
```
|
||
|
||
### 4. 安全考虑
|
||
|
||
- [ ] 限制上传文件大小
|
||
- [ ] 限制扫描目录范围
|
||
- [ ] 启用沙箱隔离
|
||
- [ ] 配置 API 速率限制
|
||
|
||
---
|
||
|
||
## ✅ 部署状态检查
|
||
|
||
运行以下命令验证部署状态:
|
||
|
||
```bash
|
||
cd backend
|
||
PYTHONPATH=. uv run python -c "
|
||
print('检查部署状态...')
|
||
|
||
# 1. 检查数据库连接
|
||
try:
|
||
from app.db.session import async_session_factory
|
||
print('✅ 数据库配置正确')
|
||
except Exception as e:
|
||
print(f'❌ 数据库错误: {e}')
|
||
|
||
# 2. 检查 LLM 配置
|
||
from app.core.config import settings
|
||
if settings.LLM_API_KEY:
|
||
print('✅ LLM API Key 已配置')
|
||
else:
|
||
print('⚠️ LLM API Key 未配置')
|
||
|
||
# 3. 检查向量数据库
|
||
import os
|
||
if os.path.exists(settings.VECTOR_DB_PATH or '/tmp'):
|
||
print('✅ 向量数据库路径存在')
|
||
else:
|
||
print('⚠️ 向量数据库路径不存在')
|
||
|
||
# 4. 检查外部工具
|
||
import shutil
|
||
tools = ['semgrep', 'bandit']
|
||
for tool in tools:
|
||
if shutil.which(tool):
|
||
print(f'✅ {tool} 已安装')
|
||
else:
|
||
print(f'⚠️ {tool} 未安装(可选)')
|
||
|
||
print()
|
||
print('部署检查完成!')
|
||
"
|
||
```
|
||
|
||
---
|
||
|
||
## 📝 结论
|
||
|
||
Agent 审计功能已经具备**基本的生产能力**,但建议:
|
||
|
||
1. **先在测试环境验证** - 用一个小项目测试完整流程
|
||
2. **监控 LLM 成本** - 观察 Token 消耗情况
|
||
3. **逐步开放** - 先给少数用户使用,收集反馈
|
||
4. **持续优化** - 根据实际效果调整 prompt 和阈值
|
||
|
||
如有问题,请查看日志或联系开发团队。
|