84 lines
3.0 KiB
Python
84 lines
3.0 KiB
Python
"""
|
||
Ollama本地大模型适配器 - 兼容OpenAI格式
|
||
"""
|
||
|
||
from typing import Dict, Any
|
||
from ..base_adapter import BaseLLMAdapter
|
||
from ..types import LLMRequest, LLMResponse, LLMUsage, DEFAULT_BASE_URLS, LLMProvider
|
||
|
||
|
||
class OllamaAdapter(BaseLLMAdapter):
|
||
"""Ollama本地模型适配器"""
|
||
|
||
@property
|
||
def base_url(self) -> str:
|
||
return self.config.base_url or DEFAULT_BASE_URLS.get(LLMProvider.OLLAMA, "http://localhost:11434/v1")
|
||
|
||
async def complete(self, request: LLMRequest) -> LLMResponse:
|
||
try:
|
||
# Ollama本地运行,跳过API Key验证
|
||
return await self.retry(lambda: self._send_request(request))
|
||
except Exception as error:
|
||
self.handle_error(error, "Ollama API调用失败")
|
||
|
||
async def _send_request(self, request: LLMRequest) -> LLMResponse:
|
||
# Ollama兼容OpenAI格式
|
||
headers = {}
|
||
if self.config.api_key:
|
||
headers["Authorization"] = f"Bearer {self.config.api_key}"
|
||
|
||
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
|
||
|
||
request_body: Dict[str, Any] = {
|
||
"model": self.config.model,
|
||
"messages": messages,
|
||
"temperature": request.temperature if request.temperature is not None else self.config.temperature,
|
||
"top_p": request.top_p if request.top_p is not None else self.config.top_p,
|
||
}
|
||
|
||
# Ollama的max_tokens参数名可能不同
|
||
if request.max_tokens or self.config.max_tokens:
|
||
request_body["num_predict"] = request.max_tokens or self.config.max_tokens
|
||
|
||
url = f"{self.base_url.rstrip('/')}/chat/completions"
|
||
|
||
response = await self.client.post(
|
||
url,
|
||
headers=self.build_headers(headers) if headers else self.build_headers(),
|
||
json=request_body
|
||
)
|
||
|
||
if response.status_code != 200:
|
||
error_data = response.json() if response.text else {}
|
||
error_msg = error_data.get("error", {}).get("message", f"HTTP {response.status_code}")
|
||
raise Exception(f"{error_msg}")
|
||
|
||
data = response.json()
|
||
choice = data.get("choices", [{}])[0]
|
||
|
||
if not choice:
|
||
raise Exception("API响应格式异常: 缺少choices字段")
|
||
|
||
usage = None
|
||
if "usage" in data:
|
||
usage = LLMUsage(
|
||
prompt_tokens=data["usage"].get("prompt_tokens", 0),
|
||
completion_tokens=data["usage"].get("completion_tokens", 0),
|
||
total_tokens=data["usage"].get("total_tokens", 0)
|
||
)
|
||
|
||
return LLMResponse(
|
||
content=choice.get("message", {}).get("content", ""),
|
||
model=data.get("model"),
|
||
usage=usage,
|
||
finish_reason=choice.get("finish_reason")
|
||
)
|
||
|
||
async def validate_config(self) -> bool:
|
||
# Ollama本地运行,不需要API Key
|
||
if not self.config.model:
|
||
raise Exception("未指定Ollama模型")
|
||
return True
|
||
|
||
|