67 lines
3.1 KiB
Python
67 lines
3.1 KiB
Python
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from .conv import Conv2d
|
||
|
|
||
|
class SyncNet_color(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(SyncNet_color, self).__init__()
|
||
|
|
||
|
self.face_encoder = nn.Sequential(
|
||
|
Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3),
|
||
|
|
||
|
Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1),
|
||
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
|
||
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
|
||
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
|
||
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
|
||
|
Conv2d(512, 512, kernel_size=3, stride=1, padding=0),
|
||
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
||
|
|
||
|
self.audio_encoder = nn.Sequential(
|
||
|
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
||
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
||
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
||
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
||
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
||
|
|
||
|
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
||
|
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
||
|
|
||
|
def forward(self, audio_sequences, face_sequences): # audio_sequences := (B, dim, T)
|
||
|
face_embedding = self.face_encoder(face_sequences)
|
||
|
audio_embedding = self.audio_encoder(audio_sequences)
|
||
|
|
||
|
audio_embedding = audio_embedding.view(audio_embedding.size(0), -1)
|
||
|
face_embedding = face_embedding.view(face_embedding.size(0), -1)
|
||
|
|
||
|
audio_embedding = F.normalize(audio_embedding, p=2, dim=1)
|
||
|
face_embedding = F.normalize(face_embedding, p=2, dim=1)
|
||
|
|
||
|
|
||
|
return audio_embedding, face_embedding
|