livetalking/museasr.py

82 lines
3.0 KiB
Python
Raw Normal View History

2024-05-26 11:10:03 +08:00
import time
import torch
import numpy as np
import soundfile as sf
import resampy
import queue
from queue import Queue
from io import BytesIO
from musetalk.whisper.audio2feature import Audio2Feature
class MuseASR:
def __init__(self, opt, audio_processor:Audio2Feature):
self.opt = opt
self.fps = opt.fps # 20 ms per frame
self.sample_rate = 16000
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
self.queue = Queue()
2024-06-02 22:25:19 +08:00
# self.input_stream = BytesIO()
2024-05-26 11:10:03 +08:00
self.output_queue = Queue()
self.audio_processor = audio_processor
self.batch_size = opt.batch_size
self.stride_left_size = self.stride_right_size = 6
self.audio_feats = []
self.warm_up()
2024-06-02 22:25:19 +08:00
def put_audio_frame(self,audio_chunk): #16khz 20ms pcm
self.queue.put(audio_chunk)
2024-05-26 11:10:03 +08:00
def __get_audio_frame(self):
try:
2024-06-02 22:25:19 +08:00
frame = self.queue.get(block=True,timeout=0.02)
2024-05-26 11:10:03 +08:00
type = 0
2024-06-02 22:25:19 +08:00
#print(f'[INFO] get frame {frame.shape}')
2024-05-26 11:10:03 +08:00
except queue.Empty:
frame = np.zeros(self.chunk, dtype=np.float32)
type = 1
return frame,type
def get_audio_out(self): #get origin audio pcm to nerf
return self.output_queue.get()
def warm_up(self):
frames = []
for _ in range(self.stride_left_size + self.stride_right_size):
audio_frame,type=self.__get_audio_frame()
frames.append(audio_frame)
self.output_queue.put((audio_frame,type))
inputs = np.concatenate(frames) # [N * chunk]
whisper_feature = self.audio_processor.audio2feat(inputs)
for feature in whisper_feature:
self.audio_feats.append(feature)
for _ in range(self.stride_left_size):
self.output_queue.get()
def run_step(self):
############################################## extract audio feature ##############################################
start_time = time.time()
frames = []
for _ in range(self.batch_size*2):
audio_frame,type=self.__get_audio_frame()
frames.append(audio_frame)
self.output_queue.put((audio_frame,type))
inputs = np.concatenate(frames) # [N * chunk]
whisper_feature = self.audio_processor.audio2feat(inputs)
for feature in whisper_feature:
self.audio_feats.append(feature)
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
def get_next_feat(self):
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
return whisper_chunks