2024-05-26 11:10:03 +08:00
|
|
|
import time
|
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
import soundfile as sf
|
|
|
|
import resampy
|
|
|
|
|
|
|
|
import queue
|
|
|
|
from queue import Queue
|
|
|
|
from io import BytesIO
|
|
|
|
|
|
|
|
from musetalk.whisper.audio2feature import Audio2Feature
|
|
|
|
|
|
|
|
class MuseASR:
|
|
|
|
def __init__(self, opt, audio_processor:Audio2Feature):
|
|
|
|
self.opt = opt
|
|
|
|
|
|
|
|
self.fps = opt.fps # 20 ms per frame
|
|
|
|
self.sample_rate = 16000
|
|
|
|
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
|
|
|
self.queue = Queue()
|
2024-06-02 22:25:19 +08:00
|
|
|
# self.input_stream = BytesIO()
|
2024-05-26 11:10:03 +08:00
|
|
|
self.output_queue = Queue()
|
|
|
|
|
|
|
|
self.audio_processor = audio_processor
|
|
|
|
self.batch_size = opt.batch_size
|
|
|
|
|
|
|
|
self.stride_left_size = self.stride_right_size = 6
|
|
|
|
self.audio_feats = []
|
|
|
|
|
|
|
|
self.warm_up()
|
|
|
|
|
2024-06-02 22:25:19 +08:00
|
|
|
def put_audio_frame(self,audio_chunk): #16khz 20ms pcm
|
|
|
|
self.queue.put(audio_chunk)
|
2024-05-26 11:10:03 +08:00
|
|
|
|
|
|
|
def __get_audio_frame(self):
|
|
|
|
try:
|
2024-06-02 22:25:19 +08:00
|
|
|
frame = self.queue.get(block=True,timeout=0.02)
|
2024-05-26 11:10:03 +08:00
|
|
|
type = 0
|
2024-06-02 22:25:19 +08:00
|
|
|
#print(f'[INFO] get frame {frame.shape}')
|
2024-05-26 11:10:03 +08:00
|
|
|
except queue.Empty:
|
|
|
|
frame = np.zeros(self.chunk, dtype=np.float32)
|
|
|
|
type = 1
|
|
|
|
|
|
|
|
return frame,type
|
|
|
|
|
|
|
|
def get_audio_out(self): #get origin audio pcm to nerf
|
|
|
|
return self.output_queue.get()
|
|
|
|
|
|
|
|
def warm_up(self):
|
|
|
|
frames = []
|
|
|
|
for _ in range(self.stride_left_size + self.stride_right_size):
|
|
|
|
audio_frame,type=self.__get_audio_frame()
|
|
|
|
frames.append(audio_frame)
|
|
|
|
self.output_queue.put((audio_frame,type))
|
|
|
|
inputs = np.concatenate(frames) # [N * chunk]
|
|
|
|
whisper_feature = self.audio_processor.audio2feat(inputs)
|
|
|
|
for feature in whisper_feature:
|
|
|
|
self.audio_feats.append(feature)
|
|
|
|
|
|
|
|
for _ in range(self.stride_left_size):
|
|
|
|
self.output_queue.get()
|
|
|
|
|
|
|
|
def run_step(self):
|
|
|
|
############################################## extract audio feature ##############################################
|
|
|
|
start_time = time.time()
|
|
|
|
frames = []
|
|
|
|
for _ in range(self.batch_size*2):
|
|
|
|
audio_frame,type=self.__get_audio_frame()
|
|
|
|
frames.append(audio_frame)
|
|
|
|
self.output_queue.put((audio_frame,type))
|
|
|
|
inputs = np.concatenate(frames) # [N * chunk]
|
|
|
|
whisper_feature = self.audio_processor.audio2feat(inputs)
|
|
|
|
for feature in whisper_feature:
|
|
|
|
self.audio_feats.append(feature)
|
|
|
|
|
|
|
|
#print(f"processing audio costs {(time.time() - start_time) * 1000}ms, inputs shape:{inputs.shape} whisper_feature len:{len(whisper_feature)}")
|
|
|
|
|
|
|
|
def get_next_feat(self):
|
|
|
|
whisper_chunks = self.audio_processor.feature2chunks(feature_array=self.audio_feats,fps=self.fps/2,batch_size=self.batch_size,start=self.stride_left_size/2 )
|
|
|
|
#print(f"whisper_chunks len:{len(whisper_chunks)},self.audio_feats len:{len(self.audio_feats)},self.output_queue len:{self.output_queue.qsize()}")
|
|
|
|
self.audio_feats = self.audio_feats[-(self.stride_left_size + self.stride_right_size):]
|
|
|
|
return whisper_chunks
|