2024-06-02 22:25:19 +08:00
|
|
|
import time
|
|
|
|
import numpy as np
|
|
|
|
import soundfile as sf
|
|
|
|
import resampy
|
|
|
|
import asyncio
|
|
|
|
import edge_tts
|
|
|
|
|
|
|
|
from typing import Iterator
|
|
|
|
|
|
|
|
import requests
|
|
|
|
|
|
|
|
import queue
|
|
|
|
from queue import Queue
|
|
|
|
from io import BytesIO
|
|
|
|
from threading import Thread, Event
|
|
|
|
|
|
|
|
class BaseTTS:
|
|
|
|
def __init__(self, opt, parent):
|
|
|
|
self.opt=opt
|
|
|
|
self.parent = parent
|
|
|
|
|
|
|
|
self.fps = opt.fps # 20 ms per frame
|
|
|
|
self.sample_rate = 16000
|
|
|
|
self.chunk = self.sample_rate // self.fps # 320 samples per chunk (20ms * 16000 / 1000)
|
|
|
|
self.input_stream = BytesIO()
|
|
|
|
|
|
|
|
self.msgqueue = Queue()
|
|
|
|
|
|
|
|
def put_msg_txt(self,msg):
|
|
|
|
self.msgqueue.put(msg)
|
|
|
|
|
|
|
|
def render(self,quit_event):
|
|
|
|
process_thread = Thread(target=self.process_tts, args=(quit_event,))
|
|
|
|
process_thread.start()
|
|
|
|
|
|
|
|
def process_tts(self,quit_event):
|
|
|
|
while not quit_event.is_set():
|
|
|
|
try:
|
|
|
|
msg = self.msgqueue.get(block=True, timeout=1)
|
|
|
|
except queue.Empty:
|
|
|
|
continue
|
|
|
|
self.txt_to_audio(msg)
|
|
|
|
print('ttsreal thread stop')
|
|
|
|
|
|
|
|
def txt_to_audio(self,msg):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
###########################################################################################
|
|
|
|
class EdgeTTS(BaseTTS):
|
|
|
|
def txt_to_audio(self,msg):
|
|
|
|
voicename = "zh-CN-YunxiaNeural"
|
|
|
|
text = msg
|
|
|
|
t = time.time()
|
|
|
|
asyncio.new_event_loop().run_until_complete(self.__main(voicename,text))
|
|
|
|
print(f'-------edge tts time:{time.time()-t:.4f}s')
|
|
|
|
|
|
|
|
self.input_stream.seek(0)
|
|
|
|
stream = self.__create_bytes_stream(self.input_stream)
|
|
|
|
streamlen = stream.shape[0]
|
|
|
|
idx=0
|
|
|
|
while streamlen >= self.chunk:
|
|
|
|
self.parent.put_audio_frame(stream[idx:idx+self.chunk])
|
|
|
|
streamlen -= self.chunk
|
|
|
|
idx += self.chunk
|
|
|
|
#if streamlen>0: #skip last frame(not 20ms)
|
|
|
|
# self.queue.put(stream[idx:])
|
|
|
|
self.input_stream.seek(0)
|
|
|
|
self.input_stream.truncate()
|
|
|
|
|
|
|
|
def __create_bytes_stream(self,byte_stream):
|
|
|
|
#byte_stream=BytesIO(buffer)
|
|
|
|
stream, sample_rate = sf.read(byte_stream) # [T*sample_rate,] float64
|
|
|
|
print(f'[INFO]tts audio stream {sample_rate}: {stream.shape}')
|
|
|
|
stream = stream.astype(np.float32)
|
|
|
|
|
|
|
|
if stream.ndim > 1:
|
|
|
|
print(f'[WARN] audio has {stream.shape[1]} channels, only use the first.')
|
|
|
|
stream = stream[:, 0]
|
|
|
|
|
|
|
|
if sample_rate != self.sample_rate and stream.shape[0]>0:
|
|
|
|
print(f'[WARN] audio sample rate is {sample_rate}, resampling into {self.sample_rate}.')
|
|
|
|
stream = resampy.resample(x=stream, sr_orig=sample_rate, sr_new=self.sample_rate)
|
|
|
|
|
|
|
|
return stream
|
|
|
|
|
|
|
|
async def __main(self,voicename: str, text: str):
|
|
|
|
communicate = edge_tts.Communicate(text, voicename)
|
|
|
|
|
|
|
|
#with open(OUTPUT_FILE, "wb") as file:
|
|
|
|
first = True
|
|
|
|
async for chunk in communicate.stream():
|
|
|
|
if first:
|
|
|
|
first = False
|
|
|
|
if chunk["type"] == "audio":
|
|
|
|
#self.push_audio(chunk["data"])
|
|
|
|
self.input_stream.write(chunk["data"])
|
|
|
|
#file.write(chunk["data"])
|
|
|
|
elif chunk["type"] == "WordBoundary":
|
|
|
|
pass
|
|
|
|
|
|
|
|
###########################################################################################
|
|
|
|
class VoitsTTS(BaseTTS):
|
|
|
|
def txt_to_audio(self,msg):
|
|
|
|
self.stream_tts(
|
|
|
|
self.gpt_sovits(
|
|
|
|
msg,
|
|
|
|
self.opt.CHARACTER, #"test", #character
|
|
|
|
"zh", #en args.language,
|
|
|
|
self.opt.TTS_SERVER, #"http://127.0.0.1:5000", #args.server_url,
|
|
|
|
self.opt.EMOTION, #emotion
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
2024-06-04 16:06:21 +08:00
|
|
|
def gpt_sovits(self, text, character, language, server_url, emotion) -> Iterator[bytes]:
|
2024-06-02 22:25:19 +08:00
|
|
|
start = time.perf_counter()
|
|
|
|
req={}
|
|
|
|
req["text"] = text
|
|
|
|
req["text_language"] = language
|
|
|
|
req["character"] = character
|
|
|
|
req["emotion"] = emotion
|
|
|
|
#req["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality
|
|
|
|
req["stream"] = True
|
|
|
|
res = requests.post(
|
|
|
|
f"{server_url}/tts",
|
|
|
|
json=req,
|
|
|
|
stream=True,
|
|
|
|
)
|
|
|
|
end = time.perf_counter()
|
|
|
|
print(f"gpt_sovits Time to make POST: {end-start}s")
|
|
|
|
|
|
|
|
if res.status_code != 200:
|
|
|
|
print("Error:", res.text)
|
|
|
|
return
|
|
|
|
|
|
|
|
first = True
|
|
|
|
for chunk in res.iter_content(chunk_size=32000): # 1280 32K*20ms*2
|
|
|
|
if first:
|
|
|
|
end = time.perf_counter()
|
|
|
|
print(f"gpt_sovits Time to first chunk: {end-start}s")
|
|
|
|
first = False
|
|
|
|
if chunk:
|
|
|
|
yield chunk
|
|
|
|
|
|
|
|
print("gpt_sovits response.elapsed:", res.elapsed)
|
|
|
|
|
|
|
|
def stream_tts(self,audio_stream):
|
|
|
|
for chunk in audio_stream:
|
|
|
|
if chunk is not None and len(chunk)>0:
|
|
|
|
stream = np.frombuffer(chunk, dtype=np.int16).astype(np.float32) / 32767
|
|
|
|
stream = resampy.resample(x=stream, sr_orig=32000, sr_new=self.sample_rate)
|
|
|
|
#byte_stream=BytesIO(buffer)
|
|
|
|
#stream = self.__create_bytes_stream(byte_stream)
|
|
|
|
streamlen = stream.shape[0]
|
|
|
|
idx=0
|
|
|
|
while streamlen >= self.chunk:
|
|
|
|
self.parent.put_audio_frame(stream[idx:idx+self.chunk])
|
|
|
|
streamlen -= self.chunk
|
|
|
|
idx += self.chunk
|
|
|
|
|
|
|
|
###########################################################################################
|
|
|
|
class XTTS(BaseTTS):
|
|
|
|
def __init__(self, opt, parent):
|
|
|
|
super().__init__(opt,parent)
|
|
|
|
self.speaker = self.get_speaker(opt.REF_FILE, opt.TTS_SERVER)
|
|
|
|
|
|
|
|
def txt_to_audio(self,msg):
|
|
|
|
self.stream_tts(
|
|
|
|
self.xtts(
|
|
|
|
msg,
|
|
|
|
self.speaker,
|
|
|
|
"zh-cn", #en args.language,
|
|
|
|
self.opt.TTS_SERVER, #"http://localhost:9000", #args.server_url,
|
|
|
|
"20" #args.stream_chunk_size
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_speaker(self,ref_audio,server_url):
|
|
|
|
files = {"wav_file": ("reference.wav", open(ref_audio, "rb"))}
|
|
|
|
response = requests.post(f"{server_url}/clone_speaker", files=files)
|
|
|
|
return response.json()
|
|
|
|
|
|
|
|
def xtts(self,text, speaker, language, server_url, stream_chunk_size) -> Iterator[bytes]:
|
|
|
|
start = time.perf_counter()
|
|
|
|
speaker["text"] = text
|
|
|
|
speaker["language"] = language
|
|
|
|
speaker["stream_chunk_size"] = stream_chunk_size # you can reduce it to get faster response, but degrade quality
|
|
|
|
res = requests.post(
|
|
|
|
f"{server_url}/tts_stream",
|
|
|
|
json=speaker,
|
|
|
|
stream=True,
|
|
|
|
)
|
|
|
|
end = time.perf_counter()
|
|
|
|
print(f"xtts Time to make POST: {end-start}s")
|
|
|
|
|
|
|
|
if res.status_code != 200:
|
|
|
|
print("Error:", res.text)
|
|
|
|
return
|
|
|
|
|
|
|
|
first = True
|
|
|
|
for chunk in res.iter_content(chunk_size=960): #24K*20ms*2
|
|
|
|
if first:
|
|
|
|
end = time.perf_counter()
|
|
|
|
print(f"xtts Time to first chunk: {end-start}s")
|
|
|
|
first = False
|
|
|
|
if chunk:
|
|
|
|
yield chunk
|
|
|
|
|
|
|
|
print("xtts response.elapsed:", res.elapsed)
|
|
|
|
|
|
|
|
def stream_tts(self,audio_stream):
|
|
|
|
for chunk in audio_stream:
|
|
|
|
if chunk is not None and len(chunk)>0:
|
|
|
|
stream = np.frombuffer(chunk, dtype=np.int16).astype(np.float32) / 32767
|
|
|
|
stream = resampy.resample(x=stream, sr_orig=24000, sr_new=self.sample_rate)
|
|
|
|
#byte_stream=BytesIO(buffer)
|
|
|
|
#stream = self.__create_bytes_stream(byte_stream)
|
|
|
|
streamlen = stream.shape[0]
|
|
|
|
idx=0
|
|
|
|
while streamlen >= self.chunk:
|
|
|
|
self.parent.put_audio_frame(stream[idx:idx+self.chunk])
|
|
|
|
streamlen -= self.chunk
|
|
|
|
idx += self.chunk
|