154 lines
5.8 KiB
Python
154 lines
5.8 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import numpy as np
|
||
|
import os
|
||
|
from util import *
|
||
|
|
||
|
|
||
|
class Face_3DMM(nn.Module):
|
||
|
def __init__(self, modelpath, id_dim, exp_dim, tex_dim, point_num):
|
||
|
super(Face_3DMM, self).__init__()
|
||
|
# id_dim = 100
|
||
|
# exp_dim = 79
|
||
|
# tex_dim = 100
|
||
|
self.point_num = point_num
|
||
|
DMM_info = np.load(
|
||
|
os.path.join(modelpath, "3DMM_info.npy"), allow_pickle=True
|
||
|
).item()
|
||
|
base_id = DMM_info["b_shape"][:id_dim, :]
|
||
|
mu_id = DMM_info["mu_shape"]
|
||
|
base_exp = DMM_info["b_exp"][:exp_dim, :]
|
||
|
mu_exp = DMM_info["mu_exp"]
|
||
|
mu = mu_id + mu_exp
|
||
|
mu = mu.reshape(-1, 3)
|
||
|
for i in range(3):
|
||
|
mu[:, i] -= np.mean(mu[:, i])
|
||
|
mu = mu.reshape(-1)
|
||
|
self.base_id = torch.as_tensor(base_id).cuda() / 100000.0
|
||
|
self.base_exp = torch.as_tensor(base_exp).cuda() / 100000.0
|
||
|
self.mu = torch.as_tensor(mu).cuda() / 100000.0
|
||
|
base_tex = DMM_info["b_tex"][:tex_dim, :]
|
||
|
mu_tex = DMM_info["mu_tex"]
|
||
|
self.base_tex = torch.as_tensor(base_tex).cuda()
|
||
|
self.mu_tex = torch.as_tensor(mu_tex).cuda()
|
||
|
sig_id = DMM_info["sig_shape"][:id_dim]
|
||
|
sig_tex = DMM_info["sig_tex"][:tex_dim]
|
||
|
sig_exp = DMM_info["sig_exp"][:exp_dim]
|
||
|
self.sig_id = torch.as_tensor(sig_id).cuda()
|
||
|
self.sig_tex = torch.as_tensor(sig_tex).cuda()
|
||
|
self.sig_exp = torch.as_tensor(sig_exp).cuda()
|
||
|
|
||
|
keys_info = np.load(
|
||
|
os.path.join(modelpath, "keys_info.npy"), allow_pickle=True
|
||
|
).item()
|
||
|
self.keyinds = torch.as_tensor(keys_info["keyinds"]).cuda()
|
||
|
self.left_contours = torch.as_tensor(keys_info["left_contour"]).cuda()
|
||
|
self.right_contours = torch.as_tensor(keys_info["right_contour"]).cuda()
|
||
|
self.rigid_ids = torch.as_tensor(keys_info["rigid_ids"]).cuda()
|
||
|
|
||
|
def get_3dlandmarks(self, id_para, exp_para, euler_angle, trans, focal_length, cxy):
|
||
|
id_para = id_para * self.sig_id
|
||
|
exp_para = exp_para * self.sig_exp
|
||
|
batch_size = id_para.shape[0]
|
||
|
num_per_contour = self.left_contours.shape[1]
|
||
|
left_contours_flat = self.left_contours.reshape(-1)
|
||
|
right_contours_flat = self.right_contours.reshape(-1)
|
||
|
sel_index = torch.cat(
|
||
|
(
|
||
|
3 * left_contours_flat.unsqueeze(1),
|
||
|
3 * left_contours_flat.unsqueeze(1) + 1,
|
||
|
3 * left_contours_flat.unsqueeze(1) + 2,
|
||
|
),
|
||
|
dim=1,
|
||
|
).reshape(-1)
|
||
|
left_geometry = (
|
||
|
torch.mm(id_para, self.base_id[:, sel_index])
|
||
|
+ torch.mm(exp_para, self.base_exp[:, sel_index])
|
||
|
+ self.mu[sel_index]
|
||
|
)
|
||
|
left_geometry = left_geometry.view(batch_size, -1, 3)
|
||
|
proj_x = forward_transform(
|
||
|
left_geometry, euler_angle, trans, focal_length, cxy
|
||
|
)[:, :, 0]
|
||
|
proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
|
||
|
arg_min = proj_x.argmin(dim=2)
|
||
|
left_geometry = left_geometry.view(batch_size * 8, num_per_contour, 3)
|
||
|
left_3dlands = left_geometry[
|
||
|
torch.arange(batch_size * 8), arg_min.view(-1), :
|
||
|
].view(batch_size, 8, 3)
|
||
|
|
||
|
sel_index = torch.cat(
|
||
|
(
|
||
|
3 * right_contours_flat.unsqueeze(1),
|
||
|
3 * right_contours_flat.unsqueeze(1) + 1,
|
||
|
3 * right_contours_flat.unsqueeze(1) + 2,
|
||
|
),
|
||
|
dim=1,
|
||
|
).reshape(-1)
|
||
|
right_geometry = (
|
||
|
torch.mm(id_para, self.base_id[:, sel_index])
|
||
|
+ torch.mm(exp_para, self.base_exp[:, sel_index])
|
||
|
+ self.mu[sel_index]
|
||
|
)
|
||
|
right_geometry = right_geometry.view(batch_size, -1, 3)
|
||
|
proj_x = forward_transform(
|
||
|
right_geometry, euler_angle, trans, focal_length, cxy
|
||
|
)[:, :, 0]
|
||
|
proj_x = proj_x.reshape(batch_size, 8, num_per_contour)
|
||
|
arg_max = proj_x.argmax(dim=2)
|
||
|
right_geometry = right_geometry.view(batch_size * 8, num_per_contour, 3)
|
||
|
right_3dlands = right_geometry[
|
||
|
torch.arange(batch_size * 8), arg_max.view(-1), :
|
||
|
].view(batch_size, 8, 3)
|
||
|
|
||
|
sel_index = torch.cat(
|
||
|
(
|
||
|
3 * self.keyinds.unsqueeze(1),
|
||
|
3 * self.keyinds.unsqueeze(1) + 1,
|
||
|
3 * self.keyinds.unsqueeze(1) + 2,
|
||
|
),
|
||
|
dim=1,
|
||
|
).reshape(-1)
|
||
|
geometry = (
|
||
|
torch.mm(id_para, self.base_id[:, sel_index])
|
||
|
+ torch.mm(exp_para, self.base_exp[:, sel_index])
|
||
|
+ self.mu[sel_index]
|
||
|
)
|
||
|
lands_3d = geometry.view(-1, self.keyinds.shape[0], 3)
|
||
|
lands_3d[:, :8, :] = left_3dlands
|
||
|
lands_3d[:, 9:17, :] = right_3dlands
|
||
|
return lands_3d
|
||
|
|
||
|
def forward_geo_sub(self, id_para, exp_para, sub_index):
|
||
|
id_para = id_para * self.sig_id
|
||
|
exp_para = exp_para * self.sig_exp
|
||
|
sel_index = torch.cat(
|
||
|
(
|
||
|
3 * sub_index.unsqueeze(1),
|
||
|
3 * sub_index.unsqueeze(1) + 1,
|
||
|
3 * sub_index.unsqueeze(1) + 2,
|
||
|
),
|
||
|
dim=1,
|
||
|
).reshape(-1)
|
||
|
geometry = (
|
||
|
torch.mm(id_para, self.base_id[:, sel_index])
|
||
|
+ torch.mm(exp_para, self.base_exp[:, sel_index])
|
||
|
+ self.mu[sel_index]
|
||
|
)
|
||
|
return geometry.reshape(-1, sub_index.shape[0], 3)
|
||
|
|
||
|
def forward_geo(self, id_para, exp_para):
|
||
|
id_para = id_para * self.sig_id
|
||
|
exp_para = exp_para * self.sig_exp
|
||
|
geometry = (
|
||
|
torch.mm(id_para, self.base_id)
|
||
|
+ torch.mm(exp_para, self.base_exp)
|
||
|
+ self.mu
|
||
|
)
|
||
|
return geometry.reshape(-1, self.point_num, 3)
|
||
|
|
||
|
def forward_tex(self, tex_para):
|
||
|
tex_para = tex_para * self.sig_tex
|
||
|
texture = torch.mm(tex_para, self.base_tex) + self.mu_tex
|
||
|
return texture.reshape(-1, self.point_num, 3)
|