77 lines
2.2 KiB
Python
77 lines
2.2 KiB
Python
|
import numpy as np
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torch.autograd import Function
|
||
|
from torch.autograd.function import once_differentiable
|
||
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
||
|
|
||
|
try:
|
||
|
import _freqencoder as _backend
|
||
|
except ImportError:
|
||
|
from .backend import _backend
|
||
|
|
||
|
|
||
|
class _freq_encoder(Function):
|
||
|
@staticmethod
|
||
|
@custom_fwd(cast_inputs=torch.float32) # force float32 for better precision
|
||
|
def forward(ctx, inputs, degree, output_dim):
|
||
|
# inputs: [B, input_dim], float
|
||
|
# RETURN: [B, F], float
|
||
|
|
||
|
if not inputs.is_cuda: inputs = inputs.cuda()
|
||
|
inputs = inputs.contiguous()
|
||
|
|
||
|
B, input_dim = inputs.shape # batch size, coord dim
|
||
|
|
||
|
outputs = torch.empty(B, output_dim, dtype=inputs.dtype, device=inputs.device)
|
||
|
|
||
|
_backend.freq_encode_forward(inputs, B, input_dim, degree, output_dim, outputs)
|
||
|
|
||
|
ctx.save_for_backward(inputs, outputs)
|
||
|
ctx.dims = [B, input_dim, degree, output_dim]
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
@staticmethod
|
||
|
#@once_differentiable
|
||
|
@custom_bwd
|
||
|
def backward(ctx, grad):
|
||
|
# grad: [B, C * C]
|
||
|
|
||
|
grad = grad.contiguous()
|
||
|
inputs, outputs = ctx.saved_tensors
|
||
|
B, input_dim, degree, output_dim = ctx.dims
|
||
|
|
||
|
grad_inputs = torch.zeros_like(inputs)
|
||
|
_backend.freq_encode_backward(grad, outputs, B, input_dim, degree, output_dim, grad_inputs)
|
||
|
|
||
|
return grad_inputs, None, None
|
||
|
|
||
|
|
||
|
freq_encode = _freq_encoder.apply
|
||
|
|
||
|
|
||
|
class FreqEncoder(nn.Module):
|
||
|
def __init__(self, input_dim=3, degree=4):
|
||
|
super().__init__()
|
||
|
|
||
|
self.input_dim = input_dim
|
||
|
self.degree = degree
|
||
|
self.output_dim = input_dim + input_dim * 2 * degree
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"FreqEncoder: input_dim={self.input_dim} degree={self.degree} output_dim={self.output_dim}"
|
||
|
|
||
|
def forward(self, inputs, **kwargs):
|
||
|
# inputs: [..., input_dim]
|
||
|
# return: [..., ]
|
||
|
|
||
|
prefix_shape = list(inputs.shape[:-1])
|
||
|
inputs = inputs.reshape(-1, self.input_dim)
|
||
|
|
||
|
outputs = freq_encode(inputs, self.degree, self.output_dim)
|
||
|
|
||
|
outputs = outputs.reshape(prefix_shape + [self.output_dim])
|
||
|
|
||
|
return outputs
|