livetalking/ernerf/nerf_triplane/renderer.py

700 lines
29 KiB
Python
Raw Normal View History

2023-12-19 09:41:52 +08:00
import math
import trimesh
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
2024-05-02 21:05:16 +08:00
from .. import raymarching
2023-12-19 09:41:52 +08:00
from .utils import custom_meshgrid, get_audio_features, euler_angles_to_matrix, convert_poses
def sample_pdf(bins, weights, n_samples, det=False):
# This implementation is from NeRF
# bins: [B, T], old_z_vals
# weights: [B, T - 1], bin weights.
# return: [B, n_samples], new_z_vals
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples).to(weights.device)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples]).to(weights.device)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (B, n_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def plot_pointcloud(pc, color=None):
# pc: [N, 3]
# color: [N, 3/4]
print('[visualize points]', pc.shape, pc.dtype, pc.min(0), pc.max(0))
pc = trimesh.PointCloud(pc, color)
# axis
axes = trimesh.creation.axis(axis_length=4)
# sphere
sphere = trimesh.creation.icosphere(radius=1)
trimesh.Scene([pc, axes, sphere]).show()
class NeRFRenderer(nn.Module):
def __init__(self, opt):
super().__init__()
self.opt = opt
self.bound = opt.bound
self.cascade = 1 + math.ceil(math.log2(opt.bound))
self.grid_size = 128
self.density_scale = 1
self.min_near = opt.min_near
self.density_thresh = opt.density_thresh
self.density_thresh_torso = opt.density_thresh_torso
self.exp_eye = opt.exp_eye
self.test_train = opt.test_train
self.smooth_lips = opt.smooth_lips
self.torso = opt.torso
self.cuda_ray = opt.cuda_ray
# prepare aabb with a 6D tensor (xmin, ymin, zmin, xmax, ymax, zmax)
# NOTE: aabb (can be rectangular) is only used to generate points, we still rely on bound (always cubic) to calculate density grid and hashing.
aabb_train = torch.FloatTensor([-opt.bound, -opt.bound/2, -opt.bound, opt.bound, opt.bound/2, opt.bound])
aabb_infer = aabb_train.clone()
self.register_buffer('aabb_train', aabb_train)
self.register_buffer('aabb_infer', aabb_infer)
# individual codes
self.individual_num = opt.ind_num
self.individual_dim = opt.ind_dim
if self.individual_dim > 0:
self.individual_codes = nn.Parameter(torch.randn(self.individual_num, self.individual_dim) * 0.1)
if self.torso:
self.individual_dim_torso = opt.ind_dim_torso
if self.individual_dim_torso > 0:
self.individual_codes_torso = nn.Parameter(torch.randn(self.individual_num, self.individual_dim_torso) * 0.1)
# optimize camera pose
self.train_camera = self.opt.train_camera
if self.train_camera:
self.camera_dR = nn.Parameter(torch.zeros(self.individual_num, 3)) # euler angle
self.camera_dT = nn.Parameter(torch.zeros(self.individual_num, 3)) # xyz offset
# extra state for cuda raymarching
# 3D head density grid
density_grid = torch.zeros([self.cascade, self.grid_size ** 3]) # [CAS, H * H * H]
density_bitfield = torch.zeros(self.cascade * self.grid_size ** 3 // 8, dtype=torch.uint8) # [CAS * H * H * H // 8]
self.register_buffer('density_grid', density_grid)
self.register_buffer('density_bitfield', density_bitfield)
self.mean_density = 0
self.iter_density = 0
# 2D torso density grid
if self.torso:
density_grid_torso = torch.zeros([self.grid_size ** 2]) # [H * H]
self.register_buffer('density_grid_torso', density_grid_torso)
self.mean_density_torso = 0
# step counter
step_counter = torch.zeros(16, 2, dtype=torch.int32) # 16 is hardcoded for averaging...
self.register_buffer('step_counter', step_counter)
self.mean_count = 0
self.local_step = 0
# decay for enc_a
if self.smooth_lips:
self.enc_a = None
def forward(self, x, d):
raise NotImplementedError()
# separated density and color query (can accelerate non-cuda-ray mode.)
def density(self, x):
raise NotImplementedError()
def color(self, x, d, mask=None, **kwargs):
raise NotImplementedError()
def reset_extra_state(self):
if not self.cuda_ray:
return
# density grid
self.density_grid.zero_()
self.mean_density = 0
self.iter_density = 0
# step counter
self.step_counter.zero_()
self.mean_count = 0
self.local_step = 0
def run_cuda(self, rays_o, rays_d, auds, bg_coords, poses, eye=None, index=0, dt_gamma=0, bg_color=None, perturb=False, force_all_rays=False, max_steps=1024, T_thresh=1e-4, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# auds: [B, 16]
# index: [B]
# return: image: [B, N, 3], depth: [B, N]
prefix = rays_o.shape[:-1]
rays_o = rays_o.contiguous().view(-1, 3)
rays_d = rays_d.contiguous().view(-1, 3)
bg_coords = bg_coords.contiguous().view(-1, 2)
# only add camera offset at training!
if self.train_camera and (self.training or self.test_train):
dT = self.camera_dT[index] # [1, 3]
dR = euler_angles_to_matrix(self.camera_dR[index] / 180 * np.pi + 1e-8).squeeze(0) # [1, 3] --> [3, 3]
rays_o = rays_o + dT
rays_d = rays_d @ dR
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
results = {}
# pre-calculate near far
nears, fars = raymarching.near_far_from_aabb(rays_o, rays_d, self.aabb_train if self.training else self.aabb_infer, self.min_near)
nears = nears.detach()
fars = fars.detach()
# encode audio
enc_a = self.encode_audio(auds) # [1, 64]
if enc_a is not None and self.smooth_lips:
if self.enc_a is not None:
_lambda = 0.35
enc_a = _lambda * self.enc_a + (1 - _lambda) * enc_a
self.enc_a = enc_a
if self.individual_dim > 0:
if self.training:
ind_code = self.individual_codes[index]
# use a fixed ind code for the unknown test data.
else:
ind_code = self.individual_codes[0]
else:
ind_code = None
if self.training:
# setup counter
counter = self.step_counter[self.local_step % 16]
counter.zero_() # set to 0
self.local_step += 1
xyzs, dirs, deltas, rays = raymarching.march_rays_train(rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, counter, self.mean_count, perturb, 128, force_all_rays, dt_gamma, max_steps)
sigmas, rgbs, amb_aud, amb_eye, uncertainty = self(xyzs, dirs, enc_a, ind_code, eye)
sigmas = self.density_scale * sigmas
#print(f'valid RGB query ratio: {mask.sum().item() / mask.shape[0]} (total = {mask.sum().item()})')
# weights_sum, ambient_sum, uncertainty_sum, depth, image = raymarching.composite_rays_train_uncertainty(sigmas, rgbs, ambient.abs().sum(-1), uncertainty, deltas, rays)
weights_sum, amb_aud_sum, amb_eye_sum, uncertainty_sum, depth, image = raymarching.composite_rays_train_triplane(sigmas, rgbs, amb_aud.abs().sum(-1), amb_eye.abs().sum(-1), uncertainty, deltas, rays)
# for training only
results['weights_sum'] = weights_sum
results['ambient_aud'] = amb_aud_sum
results['ambient_eye'] = amb_eye_sum
results['uncertainty'] = uncertainty_sum
results['rays'] = xyzs, dirs, enc_a, ind_code, eye
else:
dtype = torch.float32
weights_sum = torch.zeros(N, dtype=dtype, device=device)
depth = torch.zeros(N, dtype=dtype, device=device)
image = torch.zeros(N, 3, dtype=dtype, device=device)
amb_aud_sum = torch.zeros(N, dtype=dtype, device=device)
amb_eye_sum = torch.zeros(N, dtype=dtype, device=device)
uncertainty_sum = torch.zeros(N, dtype=dtype, device=device)
n_alive = N
rays_alive = torch.arange(n_alive, dtype=torch.int32, device=device) # [N]
rays_t = nears.clone() # [N]
step = 0
while step < max_steps:
# count alive rays
n_alive = rays_alive.shape[0]
# exit loop
if n_alive <= 0:
break
# decide compact_steps
n_step = max(min(N // n_alive, 8), 1)
xyzs, dirs, deltas = raymarching.march_rays(n_alive, n_step, rays_alive, rays_t, rays_o, rays_d, self.bound, self.density_bitfield, self.cascade, self.grid_size, nears, fars, 128, perturb if step == 0 else False, dt_gamma, max_steps)
sigmas, rgbs, ambients_aud, ambients_eye, uncertainties = self(xyzs, dirs, enc_a, ind_code, eye)
sigmas = self.density_scale * sigmas
# raymarching.composite_rays_uncertainty(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients, uncertainties, weights_sum, depth, image, ambient_sum, uncertainty_sum, T_thresh)
raymarching.composite_rays_triplane(n_alive, n_step, rays_alive, rays_t, sigmas, rgbs, deltas, ambients_aud, ambients_eye, uncertainties, weights_sum, depth, image, amb_aud_sum, amb_eye_sum, uncertainty_sum, T_thresh)
rays_alive = rays_alive[rays_alive >= 0]
# print(f'step = {step}, n_step = {n_step}, n_alive = {n_alive}, xyzs: {xyzs.shape}')
step += n_step
torso_results = self.run_torso(rays_o, bg_coords, poses, index, bg_color)
bg_color = torso_results['bg_color']
image = image + (1 - weights_sum).unsqueeze(-1) * bg_color
image = image.view(*prefix, 3)
image = image.clamp(0, 1)
depth = torch.clamp(depth - nears, min=0) / (fars - nears)
depth = depth.view(*prefix)
amb_aud_sum = amb_aud_sum.view(*prefix)
amb_eye_sum = amb_eye_sum.view(*prefix)
results['depth'] = depth
results['image'] = image # head_image if train, else com_image
results['ambient_aud'] = amb_aud_sum
results['ambient_eye'] = amb_eye_sum
results['uncertainty'] = uncertainty_sum
return results
def run_torso(self, rays_o, bg_coords, poses, index=0, bg_color=None, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# auds: [B, 16]
# index: [B]
# return: image: [B, N, 3], depth: [B, N]
rays_o = rays_o.contiguous().view(-1, 3)
bg_coords = bg_coords.contiguous().view(-1, 2)
N = rays_o.shape[0] # N = B * N, in fact
device = rays_o.device
results = {}
# background
if bg_color is None:
bg_color = 1
# first mix torso with background
if self.torso:
# torso ind code
if self.individual_dim_torso > 0:
if self.training:
ind_code_torso = self.individual_codes_torso[index]
# use a fixed ind code for the unknown test data.
else:
ind_code_torso = self.individual_codes_torso[0]
else:
ind_code_torso = None
# 2D density grid for acceleration...
density_thresh_torso = min(self.density_thresh_torso, self.mean_density_torso)
occupancy = F.grid_sample(self.density_grid_torso.view(1, 1, self.grid_size, self.grid_size), bg_coords.view(1, -1, 1, 2), align_corners=True).view(-1)
mask = occupancy > density_thresh_torso
# masked query of torso
torso_alpha = torch.zeros([N, 1], device=device)
torso_color = torch.zeros([N, 3], device=device)
if mask.any():
torso_alpha_mask, torso_color_mask, deform = self.forward_torso(bg_coords[mask], poses, ind_code_torso)
torso_alpha[mask] = torso_alpha_mask.float()
torso_color[mask] = torso_color_mask.float()
results['deform'] = deform
# first mix torso with background
bg_color = torso_color * torso_alpha + bg_color * (1 - torso_alpha)
results['torso_alpha'] = torso_alpha
results['torso_color'] = bg_color
# print(torso_alpha.shape, torso_alpha.max().item(), torso_alpha.min().item())
results['bg_color'] = bg_color
return results
@torch.no_grad()
def mark_untrained_grid(self, poses, intrinsic, S=64):
# poses: [B, 4, 4]
# intrinsic: [3, 3]
if not self.cuda_ray:
return
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses)
B = poses.shape[0]
fx, fy, cx, cy = intrinsic
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
count = torch.zeros_like(self.density_grid)
poses = poses.to(count.device)
# 5-level loop, forgive me...
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
world_xyzs = (2 * coords.float() / (self.grid_size - 1) - 1).unsqueeze(0) # [1, N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_world_xyzs = world_xyzs * (bound - half_grid_size)
# split batch to avoid OOM
head = 0
while head < B:
tail = min(head + S, B)
# world2cam transform (poses is c2w, so we need to transpose it. Another transpose is needed for batched matmul, so the final form is without transpose.)
cam_xyzs = cas_world_xyzs - poses[head:tail, :3, 3].unsqueeze(1)
cam_xyzs = cam_xyzs @ poses[head:tail, :3, :3] # [S, N, 3]
# query if point is covered by any camera
mask_z = cam_xyzs[:, :, 2] > 0 # [S, N]
mask_x = torch.abs(cam_xyzs[:, :, 0]) < cx / fx * cam_xyzs[:, :, 2] + half_grid_size * 2
mask_y = torch.abs(cam_xyzs[:, :, 1]) < cy / fy * cam_xyzs[:, :, 2] + half_grid_size * 2
mask = (mask_z & mask_x & mask_y).sum(0).reshape(-1) # [N]
# update count
count[cas, indices] += mask
head += S
# mark untrained grid as -1
self.density_grid[count == 0] = -1
#print(f'[mark untrained grid] {(count == 0).sum()} from {resolution ** 3 * self.cascade}')
@torch.no_grad()
def update_extra_state(self, decay=0.95, S=128):
# call before each epoch to update extra states.
if not self.cuda_ray:
return
# use random auds (different expressions should have similar density grid...)
rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)
# encode audio
enc_a = self.encode_audio(auds)
### update density grid
if not self.torso: # forbid updating head if is training torso...
tmp_grid = torch.zeros_like(self.density_grid)
# use a random eye area based on training dataset's statistics...
if self.exp_eye:
eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
else:
eye = None
# full update
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
sigmas = self.density(cas_xyzs, enc_a, eye)['sigma'].reshape(-1).detach().to(tmp_grid.dtype)
sigmas *= self.density_scale
# assign
tmp_grid[cas, indices] = sigmas
# dilate the density_grid (less aggressive culling)
tmp_grid = raymarching.morton3D_dilation(tmp_grid)
# ema update
valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
self.mean_density = torch.mean(self.density_grid.clamp(min=0)).item() # -1 non-training regions are viewed as 0 density.
self.iter_density += 1
# convert to bitfield
density_thresh = min(self.mean_density, self.density_thresh)
self.density_bitfield = raymarching.packbits(self.density_grid, density_thresh, self.density_bitfield)
### update torso density grid
if self.torso:
tmp_grid_torso = torch.zeros_like(self.density_grid_torso)
# random pose, random ind_code
rand_idx = random.randint(0, self.poses.shape[0] - 1)
# pose = convert_poses(self.poses[[rand_idx]]).to(self.density_bitfield.device)
pose = self.poses[[rand_idx]].to(self.density_bitfield.device)
if self.opt.ind_dim_torso > 0:
ind_code = self.individual_codes_torso[[rand_idx]]
else:
ind_code = None
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
half_grid_size = 1 / self.grid_size
for xs in X:
for ys in Y:
xx, yy = custom_meshgrid(xs, ys)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1)], dim=-1) # [N, 2], in [0, 128)
indices = (coords[:, 1] * self.grid_size + coords[:, 0]).long() # NOTE: xy transposed!
xys = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 2] in [-1, 1]
xys = xys * (1 - half_grid_size)
# add noise in [-hgs, hgs]
xys += (torch.rand_like(xys) * 2 - 1) * half_grid_size
# query density
alphas, _, _ = self.forward_torso(xys, pose, ind_code) # [N, 1]
# assign
tmp_grid_torso[indices] = alphas.squeeze(1).float()
# dilate
tmp_grid_torso = tmp_grid_torso.view(1, 1, self.grid_size, self.grid_size)
# tmp_grid_torso = F.max_pool2d(tmp_grid_torso, kernel_size=3, stride=1, padding=1)
tmp_grid_torso = F.max_pool2d(tmp_grid_torso, kernel_size=5, stride=1, padding=2)
tmp_grid_torso = tmp_grid_torso.view(-1)
self.density_grid_torso = torch.maximum(self.density_grid_torso * decay, tmp_grid_torso)
self.mean_density_torso = torch.mean(self.density_grid_torso).item()
# density_thresh_torso = min(self.density_thresh_torso, self.mean_density_torso)
# print(f'[density grid torso] min={self.density_grid_torso.min().item():.4f}, max={self.density_grid_torso.max().item():.4f}, mean={self.mean_density_torso:.4f}, occ_rate={(self.density_grid_torso > density_thresh_torso).sum() / (128**2):.3f}')
### update step counter
total_step = min(16, self.local_step)
if total_step > 0:
self.mean_count = int(self.step_counter[:total_step, 0].sum().item() / total_step)
self.local_step = 0
#print(f'[density grid] min={self.density_grid.min().item():.4f}, max={self.density_grid.max().item():.4f}, mean={self.mean_density:.4f}, occ_rate={(self.density_grid > 0.01).sum() / (128**3 * self.cascade):.3f} | [step counter] mean={self.mean_count}')
@torch.no_grad()
def get_audio_grid(self, S=128):
# call before each epoch to update extra states.
if not self.cuda_ray:
return
# use random auds (different expressions should have similar density grid...)
rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)
# encode audio
enc_a = self.encode_audio(auds)
tmp_grid = torch.zeros_like(self.density_grid)
# use a random eye area based on training dataset's statistics...
if self.exp_eye:
eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
else:
eye = None
# full update
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
aud_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_aud'].reshape(-1).detach().to(tmp_grid.dtype)
# assign
tmp_grid[cas, indices] = aud_norms
# dilate the density_grid (less aggressive culling)
tmp_grid = raymarching.morton3D_dilation(tmp_grid)
return tmp_grid
# # ema update
# valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
# self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
@torch.no_grad()
def get_eye_grid(self, S=128):
# call before each epoch to update extra states.
if not self.cuda_ray:
return
# use random auds (different expressions should have similar density grid...)
rand_idx = random.randint(0, self.aud_features.shape[0] - 1)
auds = get_audio_features(self.aud_features, self.att, rand_idx).to(self.density_bitfield.device)
# encode audio
enc_a = self.encode_audio(auds)
tmp_grid = torch.zeros_like(self.density_grid)
# use a random eye area based on training dataset's statistics...
if self.exp_eye:
eye = self.eye_area[[rand_idx]].to(self.density_bitfield.device) # [1, 1]
else:
eye = None
# full update
X = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Y = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
Z = torch.arange(self.grid_size, dtype=torch.int32, device=self.density_bitfield.device).split(S)
for xs in X:
for ys in Y:
for zs in Z:
# construct points
xx, yy, zz = custom_meshgrid(xs, ys, zs)
coords = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [N, 3], in [0, 128)
indices = raymarching.morton3D(coords).long() # [N]
xyzs = 2 * coords.float() / (self.grid_size - 1) - 1 # [N, 3] in [-1, 1]
# cascading
for cas in range(self.cascade):
bound = min(2 ** cas, self.bound)
half_grid_size = bound / self.grid_size
# scale to current cascade's resolution
cas_xyzs = xyzs * (bound - half_grid_size)
# add noise in [-hgs, hgs]
cas_xyzs += (torch.rand_like(cas_xyzs) * 2 - 1) * half_grid_size
# query density
eye_norms = self.density(cas_xyzs.to(tmp_grid.dtype), enc_a, eye)['ambient_eye'].reshape(-1).detach().to(tmp_grid.dtype)
# assign
tmp_grid[cas, indices] = eye_norms
# dilate the density_grid (less aggressive culling)
tmp_grid = raymarching.morton3D_dilation(tmp_grid)
return tmp_grid
# # ema update
# valid_mask = (self.density_grid >= 0) & (tmp_grid >= 0)
# self.density_grid[valid_mask] = torch.maximum(self.density_grid[valid_mask] * decay, tmp_grid[valid_mask])
def render(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# auds: [B, 29, 16]
# eye: [B, 1]
# bg_coords: [1, N, 2]
# return: pred_rgb: [B, N, 3]
_run = self.run_cuda
B, N = rays_o.shape[:2]
device = rays_o.device
# never stage when cuda_ray
if staged and not self.cuda_ray:
# not used
raise NotImplementedError
else:
results = _run(rays_o, rays_d, auds, bg_coords, poses, **kwargs)
return results
def render_torso(self, rays_o, rays_d, auds, bg_coords, poses, staged=False, max_ray_batch=4096, **kwargs):
# rays_o, rays_d: [B, N, 3], assumes B == 1
# auds: [B, 29, 16]
# eye: [B, 1]
# bg_coords: [1, N, 2]
# return: pred_rgb: [B, N, 3]
_run = self.run_torso
B, N = rays_o.shape[:2]
device = rays_o.device
# never stage when cuda_ray
if staged and not self.cuda_ray:
# not used
raise NotImplementedError
else:
results = _run(rays_o, bg_coords, poses, **kwargs)
return results