livetalking/ernerf/nerf_triplane/utils.py

1516 lines
57 KiB
Python
Raw Normal View History

2023-12-19 09:41:52 +08:00
import os
import glob
import tqdm
import math
import random
import warnings
import tensorboardX
import numpy as np
import pandas as pd
import time
from datetime import datetime
import cv2
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
import trimesh
import mcubes
from rich.console import Console
from torch_ema import ExponentialMovingAverage
from packaging import version as pver
import imageio
import lpips
def custom_meshgrid(*args):
# ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid
if pver.parse(torch.__version__) < pver.parse('1.10'):
return torch.meshgrid(*args)
else:
return torch.meshgrid(*args, indexing='ij')
def get_audio_features(features, att_mode, index):
if att_mode == 0:
return features[[index]]
elif att_mode == 1:
left = index - 8
pad_left = 0
if left < 0:
pad_left = -left
left = 0
auds = features[left:index]
if pad_left > 0:
# pad may be longer than auds, so do not use zeros_like
auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0)
return auds
elif att_mode == 2:
left = index - 4
right = index + 4
pad_left = 0
pad_right = 0
if left < 0:
pad_left = -left
left = 0
if right > features.shape[0]:
pad_right = right - features.shape[0]
right = features.shape[0]
auds = features[left:right]
if pad_left > 0:
auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0)
if pad_right > 0:
auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16]
return auds
else:
raise NotImplementedError(f'wrong att_mode: {att_mode}')
@torch.jit.script
def linear_to_srgb(x):
return torch.where(x < 0.0031308, 12.92 * x, 1.055 * x ** 0.41666 - 0.055)
@torch.jit.script
def srgb_to_linear(x):
return torch.where(x < 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
# copied from pytorch3d
def _angle_from_tan(
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
) -> torch.Tensor:
"""
Extract the first or third Euler angle from the two members of
the matrix which are positive constant times its sine and cosine.
Args:
axis: Axis label "X" or "Y or "Z" for the angle we are finding.
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the
convention.
data: Rotation matrices as tensor of shape (..., 3, 3).
horizontal: Whether we are looking for the angle for the third axis,
which means the relevant entries are in the same row of the
rotation matrix. If not, they are in the same column.
tait_bryan: Whether the first and third axes in the convention differ.
Returns:
Euler Angles in radians for each matrix in data as a tensor
of shape (...).
"""
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
if horizontal:
i2, i1 = i1, i2
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
if horizontal == even:
return torch.atan2(data[..., i1], data[..., i2])
if tait_bryan:
return torch.atan2(-data[..., i2], data[..., i1])
return torch.atan2(data[..., i2], -data[..., i1])
def _index_from_letter(letter: str) -> int:
if letter == "X":
return 0
if letter == "Y":
return 1
if letter == "Z":
return 2
raise ValueError("letter must be either X, Y or Z.")
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str = 'XYZ') -> torch.Tensor:
"""
Convert rotations given as rotation matrices to Euler angles in radians.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
convention: Convention string of three uppercase letters.
Returns:
Euler angles in radians as tensor of shape (..., 3).
"""
# if len(convention) != 3:
# raise ValueError("Convention must have 3 letters.")
# if convention[1] in (convention[0], convention[2]):
# raise ValueError(f"Invalid convention {convention}.")
# for letter in convention:
# if letter not in ("X", "Y", "Z"):
# raise ValueError(f"Invalid letter {letter} in convention string.")
# if matrix.size(-1) != 3 or matrix.size(-2) != 3:
# raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
i0 = _index_from_letter(convention[0])
i2 = _index_from_letter(convention[2])
tait_bryan = i0 != i2
if tait_bryan:
central_angle = torch.asin(
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
)
else:
central_angle = torch.acos(matrix[..., i0, i0])
o = (
_angle_from_tan(
convention[0], convention[1], matrix[..., i2], False, tait_bryan
),
central_angle,
_angle_from_tan(
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
),
)
return torch.stack(o, -1)
@torch.cuda.amp.autocast(enabled=False)
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
@torch.cuda.amp.autocast(enabled=False)
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str='XYZ') -> torch.Tensor:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
# print(euler_angles, euler_angles.dtype)
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
@torch.cuda.amp.autocast(enabled=False)
def convert_poses(poses):
# poses: [B, 4, 4]
# return [B, 3], 4 rot, 3 trans
out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device)
out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3])
out[:, 3:] = poses[:, :3, 3]
return out
@torch.cuda.amp.autocast(enabled=False)
def get_bg_coords(H, W, device):
X = torch.arange(H, device=device) / (H - 1) * 2 - 1 # in [-1, 1]
Y = torch.arange(W, device=device) / (W - 1) * 2 - 1 # in [-1, 1]
xs, ys = custom_meshgrid(X, Y)
bg_coords = torch.cat([xs.reshape(-1, 1), ys.reshape(-1, 1)], dim=-1).unsqueeze(0) # [1, H*W, 2], in [-1, 1]
return bg_coords
@torch.cuda.amp.autocast(enabled=False)
def get_rays(poses, intrinsics, H, W, N=-1, patch_size=1, rect=None):
''' get rays
Args:
poses: [B, 4, 4], cam2world
intrinsics: [4]
H, W, N: int
Returns:
rays_o, rays_d: [B, N, 3]
inds: [B, N]
'''
device = poses.device
B = poses.shape[0]
fx, fy, cx, cy = intrinsics
if rect is not None:
xmin, xmax, ymin, ymax = rect
N = (xmax - xmin) * (ymax - ymin)
i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) # float
i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5
results = {}
if N > 0:
N = min(N, H*W)
if patch_size > 1:
# random sample left-top cores.
# NOTE: this impl will lead to less sampling on the image corner pixels... but I don't have other ideas.
num_patch = N // (patch_size ** 2)
inds_x = torch.randint(0, H - patch_size, size=[num_patch], device=device)
inds_y = torch.randint(0, W - patch_size, size=[num_patch], device=device)
inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2]
# create meshgrid for each patch
pi, pj = custom_meshgrid(torch.arange(patch_size, device=device), torch.arange(patch_size, device=device))
offsets = torch.stack([pi.reshape(-1), pj.reshape(-1)], dim=-1) # [p^2, 2]
inds = inds.unsqueeze(1) + offsets.unsqueeze(0) # [np, p^2, 2]
inds = inds.view(-1, 2) # [N, 2]
inds = inds[:, 0] * W + inds[:, 1] # [N], flatten
inds = inds.expand([B, N])
# only get rays in the specified rect
elif rect is not None:
# assert B == 1
mask = torch.zeros(H, W, dtype=torch.bool, device=device)
xmin, xmax, ymin, ymax = rect
mask[xmin:xmax, ymin:ymax] = 1
inds = torch.where(mask.view(-1))[0] # [nzn]
inds = inds.unsqueeze(0) # [1, N]
else:
inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate
inds = inds.expand([B, N])
i = torch.gather(i, -1, inds)
j = torch.gather(j, -1, inds)
else:
inds = torch.arange(H*W, device=device).expand([B, H*W])
results['i'] = i
results['j'] = j
results['inds'] = inds
zs = torch.ones_like(i)
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
directions = torch.stack((xs, ys, zs), dim=-1)
directions = directions / torch.norm(directions, dim=-1, keepdim=True)
rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3)
rays_o = poses[..., :3, 3] # [B, 3]
rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3]
results['rays_o'] = rays_o
results['rays_d'] = rays_d
return results
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
#torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = True
def torch_vis_2d(x, renormalize=False):
# x: [3, H, W] or [1, H, W] or [H, W]
import matplotlib.pyplot as plt
import numpy as np
import torch
if isinstance(x, torch.Tensor):
if len(x.shape) == 3:
x = x.permute(1,2,0).squeeze()
x = x.detach().cpu().numpy()
print(f'[torch_vis_2d] {x.shape}, {x.dtype}, {x.min()} ~ {x.max()}')
x = x.astype(np.float32)
# renormalize
if renormalize:
x = (x - x.min(axis=0, keepdims=True)) / (x.max(axis=0, keepdims=True) - x.min(axis=0, keepdims=True) + 1e-8)
plt.imshow(x)
plt.show()
def extract_fields(bound_min, bound_max, resolution, query_func, S=128):
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(S)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(S)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(S)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = custom_meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1) # [S, 3]
val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy() # [S, 1] --> [x, y, z]
u[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S: zi * S + len(zs)] = val
return u
def extract_geometry(bound_min, bound_max, resolution, threshold, query_func):
#print('threshold: {}'.format(threshold))
u = extract_fields(bound_min, bound_max, resolution, query_func)
#print(u.shape, u.max(), u.min(), np.percentile(u, 50))
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices, triangles
class PSNRMeter:
def __init__(self):
self.V = 0
self.N = 0
def clear(self):
self.V = 0
self.N = 0
def prepare_inputs(self, *inputs):
outputs = []
for i, inp in enumerate(inputs):
if torch.is_tensor(inp):
inp = inp.detach().cpu().numpy()
outputs.append(inp)
return outputs
def update(self, preds, truths):
preds, truths = self.prepare_inputs(preds, truths) # [B, N, 3] or [B, H, W, 3], range in [0, 1]
# simplified since max_pixel_value is 1 here.
psnr = -10 * np.log10(np.mean((preds - truths) ** 2))
self.V += psnr
self.N += 1
def measure(self):
return self.V / self.N
def write(self, writer, global_step, prefix=""):
writer.add_scalar(os.path.join(prefix, "PSNR"), self.measure(), global_step)
def report(self):
return f'PSNR = {self.measure():.6f}'
class LPIPSMeter:
def __init__(self, net='alex', device=None):
self.V = 0
self.N = 0
self.net = net
self.device = device if device is not None else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.fn = lpips.LPIPS(net=net).eval().to(self.device)
def clear(self):
self.V = 0
self.N = 0
def prepare_inputs(self, *inputs):
outputs = []
for i, inp in enumerate(inputs):
inp = inp.permute(0, 3, 1, 2).contiguous() # [B, 3, H, W]
inp = inp.to(self.device)
outputs.append(inp)
return outputs
def update(self, preds, truths):
preds, truths = self.prepare_inputs(preds, truths) # [B, H, W, 3] --> [B, 3, H, W], range in [0, 1]
v = self.fn(truths, preds, normalize=True).item() # normalize=True: [0, 1] to [-1, 1]
self.V += v
self.N += 1
def measure(self):
return self.V / self.N
def write(self, writer, global_step, prefix=""):
writer.add_scalar(os.path.join(prefix, f"LPIPS ({self.net})"), self.measure(), global_step)
def report(self):
return f'LPIPS ({self.net}) = {self.measure():.6f}'
class LMDMeter:
def __init__(self, backend='dlib', region='mouth'):
self.backend = backend
self.region = region # mouth or face
if self.backend == 'dlib':
import dlib
# load checkpoint manually
self.predictor_path = './shape_predictor_68_face_landmarks.dat'
if not os.path.exists(self.predictor_path):
raise FileNotFoundError('Please download dlib checkpoint from http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2')
self.detector = dlib.get_frontal_face_detector()
self.predictor = dlib.shape_predictor(self.predictor_path)
else:
import face_alignment
try:
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False)
except:
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False)
self.V = 0
self.N = 0
def get_landmarks(self, img):
if self.backend == 'dlib':
dets = self.detector(img, 1)
for det in dets:
shape = self.predictor(img, det)
# ref: https://github.com/PyImageSearch/imutils/blob/c12f15391fcc945d0d644b85194b8c044a392e0a/imutils/face_utils/helpers.py
lms = np.zeros((68, 2), dtype=np.int32)
for i in range(0, 68):
lms[i, 0] = shape.part(i).x
lms[i, 1] = shape.part(i).y
break
else:
lms = self.predictor.get_landmarks(img)[-1]
# self.vis_landmarks(img, lms)
lms = lms.astype(np.float32)
return lms
def vis_landmarks(self, img, lms):
plt.imshow(img)
plt.plot(lms[48:68, 0], lms[48:68, 1], marker='o', markersize=1, linestyle='-', lw=2)
plt.show()
def clear(self):
self.V = 0
self.N = 0
def prepare_inputs(self, *inputs):
outputs = []
for i, inp in enumerate(inputs):
inp = inp.detach().cpu().numpy()
inp = (inp * 255).astype(np.uint8)
outputs.append(inp)
return outputs
def update(self, preds, truths):
# assert B == 1
preds, truths = self.prepare_inputs(preds[0], truths[0]) # [H, W, 3] numpy array
# get lms
lms_pred = self.get_landmarks(preds)
lms_truth = self.get_landmarks(truths)
if self.region == 'mouth':
lms_pred = lms_pred[48:68]
lms_truth = lms_truth[48:68]
# avarage
lms_pred = lms_pred - lms_pred.mean(0)
lms_truth = lms_truth - lms_truth.mean(0)
# distance
dist = np.sqrt(((lms_pred - lms_truth) ** 2).sum(1)).mean(0)
self.V += dist
self.N += 1
def measure(self):
return self.V / self.N
def write(self, writer, global_step, prefix=""):
writer.add_scalar(os.path.join(prefix, f"LMD ({self.backend})"), self.measure(), global_step)
def report(self):
return f'LMD ({self.backend}) = {self.measure():.6f}'
class Trainer(object):
def __init__(self,
name, # name of this experiment
opt, # extra conf
model, # network
criterion=None, # loss function, if None, assume inline implementation in train_step
optimizer=None, # optimizer
ema_decay=None, # if use EMA, set the decay
ema_update_interval=1000, # update ema per $ training steps.
lr_scheduler=None, # scheduler
metrics=[], # metrics for evaluation, if None, use val_loss to measure performance, else use the first metric.
local_rank=0, # which GPU am I
world_size=1, # total num of GPUs
device=None, # device to use, usually setting to None is OK. (auto choose device)
mute=False, # whether to mute all print
fp16=False, # amp optimize level
eval_interval=1, # eval once every $ epoch
max_keep_ckpt=2, # max num of saved ckpts in disk
workspace='workspace', # workspace to save logs & ckpts
best_mode='min', # the smaller/larger result, the better
use_loss_as_metric=True, # use loss as the first metric
report_metric_at_train=False, # also report metrics at training
use_checkpoint="latest", # which ckpt to use at init time
use_tensorboardX=True, # whether to use tensorboard for logging
scheduler_update_every_step=False, # whether to call scheduler.step() after every train step
):
self.name = name
self.opt = opt
self.mute = mute
self.metrics = metrics
self.local_rank = local_rank
self.world_size = world_size
self.workspace = workspace
self.ema_decay = ema_decay
self.ema_update_interval = ema_update_interval
self.fp16 = fp16
self.best_mode = best_mode
self.use_loss_as_metric = use_loss_as_metric
self.report_metric_at_train = report_metric_at_train
self.max_keep_ckpt = max_keep_ckpt
self.eval_interval = eval_interval
self.use_checkpoint = use_checkpoint
self.use_tensorboardX = use_tensorboardX
self.flip_finetune_lips = self.opt.finetune_lips
self.flip_init_lips = self.opt.init_lips
self.time_stamp = time.strftime("%Y-%m-%d_%H-%M-%S")
self.scheduler_update_every_step = scheduler_update_every_step
self.device = device if device is not None else torch.device(f'cuda:{local_rank}' if torch.cuda.is_available() else 'cpu')
self.console = Console()
model.to(self.device)
if self.world_size > 1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
self.model = model
if isinstance(criterion, nn.Module):
criterion.to(self.device)
self.criterion = criterion
if optimizer is None:
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001, weight_decay=5e-4) # naive adam
else:
self.optimizer = optimizer(self.model)
if lr_scheduler is None:
self.lr_scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: 1) # fake scheduler
else:
self.lr_scheduler = lr_scheduler(self.optimizer)
if ema_decay is not None:
self.ema = ExponentialMovingAverage(self.model.parameters(), decay=ema_decay)
else:
self.ema = None
self.scaler = torch.cuda.amp.GradScaler(enabled=self.fp16)
# optionally use LPIPS loss for patch-based training
if self.opt.patch_size > 1 or self.opt.finetune_lips or True:
import lpips
# self.criterion_lpips_vgg = lpips.LPIPS(net='vgg').to(self.device)
self.criterion_lpips_alex = lpips.LPIPS(net='alex').to(self.device)
# variable init
self.epoch = 0
self.global_step = 0
self.local_step = 0
self.stats = {
"loss": [],
"valid_loss": [],
"results": [], # metrics[0], or valid_loss
"checkpoints": [], # record path of saved ckpt, to automatically remove old ckpt
"best_result": None,
}
# auto fix
if len(metrics) == 0 or self.use_loss_as_metric:
self.best_mode = 'min'
# workspace prepare
self.log_ptr = None
if self.workspace is not None:
os.makedirs(self.workspace, exist_ok=True)
self.log_path = os.path.join(workspace, f"log_{self.name}.txt")
self.log_ptr = open(self.log_path, "a+")
self.ckpt_path = os.path.join(self.workspace, 'checkpoints')
self.best_path = f"{self.ckpt_path}/{self.name}.pth"
os.makedirs(self.ckpt_path, exist_ok=True)
self.log(f'[INFO] Trainer: {self.name} | {self.time_stamp} | {self.device} | {"fp16" if self.fp16 else "fp32"} | {self.workspace}')
self.log(f'[INFO] #parameters: {sum([p.numel() for p in model.parameters() if p.requires_grad])}')
if self.workspace is not None:
if self.use_checkpoint == "scratch":
self.log("[INFO] Training from scratch ...")
elif self.use_checkpoint == "latest":
self.log("[INFO] Loading latest checkpoint ...")
self.load_checkpoint()
elif self.use_checkpoint == "latest_model":
self.log("[INFO] Loading latest checkpoint (model only)...")
self.load_checkpoint(model_only=True)
elif self.use_checkpoint == "best":
if os.path.exists(self.best_path):
self.log("[INFO] Loading best checkpoint ...")
self.load_checkpoint(self.best_path)
else:
self.log(f"[INFO] {self.best_path} not found, loading latest ...")
self.load_checkpoint()
else: # path to ckpt
self.log(f"[INFO] Loading {self.use_checkpoint} ...")
self.load_checkpoint(self.use_checkpoint)
def __del__(self):
if self.log_ptr:
self.log_ptr.close()
def log(self, *args, **kwargs):
if self.local_rank == 0:
if not self.mute:
#print(*args)
self.console.print(*args, **kwargs)
if self.log_ptr:
print(*args, file=self.log_ptr)
self.log_ptr.flush() # write immediately to file
### ------------------------------
def train_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
bg_coords = data['bg_coords'] # [1, N, 2]
poses = data['poses'] # [B, 6]
face_mask = data['face_mask'] # [B, N]
eye_mask = data['eye_mask'] # [B, N]
lhalf_mask = data['lhalf_mask']
eye = data['eye'] # [B, 1]
auds = data['auds'] # [B, 29, 16]
index = data['index'] # [B]
if not self.opt.torso:
rgb = data['images'] # [B, N, 3]
else:
rgb = data['bg_torso_color']
B, N, C = rgb.shape
if self.opt.color_space == 'linear':
rgb[..., :3] = srgb_to_linear(rgb[..., :3])
bg_color = data['bg_color']
if not self.opt.torso:
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt))
else:
outputs = self.model.render_torso(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=False, bg_color=bg_color, perturb=True, force_all_rays=False if (self.opt.patch_size <= 1 and not self.opt.train_camera) else True, **vars(self.opt))
if not self.opt.torso:
pred_rgb = outputs['image']
else:
pred_rgb = outputs['torso_color']
# loss factor
step_factor = min(self.global_step / self.opt.iters, 1.0)
# MSE loss
loss = self.criterion(pred_rgb, rgb).mean(-1) # [B, N, 3] --> [B, N]
if self.opt.torso:
loss = loss.mean()
loss += ((1 - self.model.anchor_points[:, 3])**2).mean()
return pred_rgb, rgb, loss
# camera optim regularization
# if self.opt.train_camera:
# cam_reg = self.model.camera_dR[index].abs().mean() + self.model.camera_dT[index].abs().mean()
# loss = loss + 1e-2 * cam_reg
if self.opt.unc_loss and not self.flip_finetune_lips:
alpha = 0.2
uncertainty = outputs['uncertainty'] # [N], abs sum
beta = uncertainty + 1
unc_weight = F.softmax(uncertainty, dim=-1) * N
# print(unc_weight.shape, unc_weight.max(), unc_weight.min())
loss *= alpha + (1-alpha)*((1 - step_factor) + step_factor * unc_weight.detach()).clamp(0, 10)
# loss *= unc_weight.detach()
beta = uncertainty + 1
norm_rgb = torch.norm((pred_rgb - rgb), dim=-1).detach()
loss_u = norm_rgb / (2*beta**2) + (torch.log(beta)**2) / 2
loss_u *= face_mask.view(-1)
loss += step_factor * loss_u
loss_static_uncertainty = (uncertainty * (~face_mask.view(-1)))
loss += 1e-3 * step_factor * loss_static_uncertainty
# patch-based rendering
if self.opt.patch_size > 1 and not self.opt.finetune_lips:
rgb = rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous()
pred_rgb = pred_rgb.view(-1, self.opt.patch_size, self.opt.patch_size, 3).permute(0, 3, 1, 2).contiguous()
# torch_vis_2d(rgb[0])
# torch_vis_2d(pred_rgb[0])
# LPIPS loss ?
loss_lpips = self.criterion_lpips_alex(pred_rgb, rgb)
loss = loss + 0.1 * loss_lpips
# lips finetune
if self.opt.finetune_lips:
xmin, xmax, ymin, ymax = data['rect']
rgb = rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous()
pred_rgb = pred_rgb.view(-1, xmax - xmin, ymax - ymin, 3).permute(0, 3, 1, 2).contiguous()
# torch_vis_2d(rgb[0])
# torch_vis_2d(pred_rgb[0])
# LPIPS loss
loss = loss + 0.01 * self.criterion_lpips_alex(pred_rgb, rgb)
# flip every step... if finetune lips
if self.flip_finetune_lips:
self.opt.finetune_lips = not self.opt.finetune_lips
loss = loss.mean()
# weights_sum loss
# entropy to encourage weights_sum to be 0 or 1.
if self.opt.torso:
alphas = outputs['torso_alpha'].clamp(1e-5, 1 - 1e-5)
# alphas = alphas ** 2 # skewed entropy, favors 0 over 1
loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)
loss = loss + 1e-4 * loss_ws.mean()
else:
alphas = outputs['weights_sum'].clamp(1e-5, 1 - 1e-5)
loss_ws = - alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas)
loss = loss + 1e-4 * loss_ws.mean()
# aud att loss (regions out of face should be static)
if self.opt.amb_aud_loss and not self.opt.torso:
ambient_aud = outputs['ambient_aud']
loss_amb_aud = (ambient_aud * (~face_mask.view(-1))).mean()
# gradually increase it
lambda_amb = step_factor * self.opt.lambda_amb
loss += lambda_amb * loss_amb_aud
# eye att loss
if self.opt.amb_eye_loss and not self.opt.torso:
ambient_eye = outputs['ambient_eye'] / self.opt.max_steps
loss_cross = ((ambient_eye * ambient_aud.detach())*face_mask.view(-1)).mean()
loss += lambda_amb * loss_cross
# regularize
if self.global_step % 16 == 0 and not self.flip_finetune_lips:
xyzs, dirs, enc_a, ind_code, eye = outputs['rays']
xyz_delta = (torch.rand(size=xyzs.shape, dtype=xyzs.dtype, device=xyzs.device) * 2 - 1) * 1e-3
with torch.no_grad():
sigmas_raw, rgbs_raw, ambient_aud_raw, ambient_eye_raw, unc_raw = self.model(xyzs, dirs, enc_a.detach(), ind_code.detach(), eye)
sigmas_reg, rgbs_reg, ambient_aud_reg, ambient_eye_reg, unc_reg = self.model(xyzs+xyz_delta, dirs, enc_a.detach(), ind_code.detach(), eye)
lambda_reg = step_factor * 1e-5
reg_loss = 0
if self.opt.unc_loss:
reg_loss += self.criterion(unc_raw, unc_reg).mean()
if self.opt.amb_aud_loss:
reg_loss += self.criterion(ambient_aud_raw, ambient_aud_reg).mean()
if self.opt.amb_eye_loss:
reg_loss += self.criterion(ambient_eye_raw, ambient_eye_reg).mean()
loss += reg_loss * lambda_reg
return pred_rgb, rgb, loss
def eval_step(self, data):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
bg_coords = data['bg_coords'] # [1, N, 2]
poses = data['poses'] # [B, 7]
images = data['images'] # [B, H, W, 3/4]
auds = data['auds']
index = data['index'] # [B]
eye = data['eye'] # [B, 1]
B, H, W, C = images.shape
if self.opt.color_space == 'linear':
images[..., :3] = srgb_to_linear(images[..., :3])
# eval with fixed background color
# bg_color = 1
bg_color = data['bg_color']
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=False, **vars(self.opt))
pred_rgb = outputs['image'].reshape(B, H, W, 3)
pred_depth = outputs['depth'].reshape(B, H, W)
pred_ambient_aud = outputs['ambient_aud'].reshape(B, H, W)
pred_ambient_eye = outputs['ambient_eye'].reshape(B, H, W)
pred_uncertainty = outputs['uncertainty'].reshape(B, H, W)
loss_raw = self.criterion(pred_rgb, images)
loss = loss_raw.mean()
return pred_rgb, pred_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, images, loss, loss_raw
# moved out bg_color and perturb for more flexible control...
def test_step(self, data, bg_color=None, perturb=False):
rays_o = data['rays_o'] # [B, N, 3]
rays_d = data['rays_d'] # [B, N, 3]
bg_coords = data['bg_coords'] # [1, N, 2]
poses = data['poses'] # [B, 7]
auds = data['auds'] # [B, 29, 16]
index = data['index']
H, W = data['H'], data['W']
# allow using a fixed eye area (avoid eye blink) at test
if self.opt.exp_eye and self.opt.fix_eye >= 0:
eye = torch.FloatTensor([self.opt.fix_eye]).view(1, 1).to(self.device)
else:
eye = data['eye'] # [B, 1]
if bg_color is not None:
bg_color = bg_color.to(self.device)
else:
bg_color = data['bg_color']
self.model.testing = True
outputs = self.model.render(rays_o, rays_d, auds, bg_coords, poses, eye=eye, index=index, staged=True, bg_color=bg_color, perturb=perturb, **vars(self.opt))
self.model.testing = False
pred_rgb = outputs['image'].reshape(-1, H, W, 3)
pred_depth = outputs['depth'].reshape(-1, H, W)
return pred_rgb, pred_depth
def save_mesh(self, save_path=None, resolution=256, threshold=10):
if save_path is None:
save_path = os.path.join(self.workspace, 'meshes', f'{self.name}_{self.epoch}.ply')
self.log(f"==> Saving mesh to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
def query_func(pts):
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=self.fp16):
sigma = self.model.density(pts.to(self.device))['sigma']
return sigma
vertices, triangles = extract_geometry(self.model.aabb_infer[:3], self.model.aabb_infer[3:], resolution=resolution, threshold=threshold, query_func=query_func)
mesh = trimesh.Trimesh(vertices, triangles, process=False) # important, process=True leads to seg fault...
mesh.export(save_path)
self.log(f"==> Finished saving mesh.")
### ------------------------------
def train(self, train_loader, valid_loader, max_epochs):
if self.use_tensorboardX and self.local_rank == 0:
self.writer = tensorboardX.SummaryWriter(os.path.join(self.workspace, "run", self.name))
# mark untrained region (i.e., not covered by any camera from the training dataset)
if self.model.cuda_ray:
self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics)
for epoch in range(self.epoch + 1, max_epochs + 1):
self.epoch = epoch
self.train_one_epoch(train_loader)
if self.workspace is not None and self.local_rank == 0:
self.save_checkpoint(full=True, best=False)
if self.epoch % self.eval_interval == 0:
self.evaluate_one_epoch(valid_loader)
self.save_checkpoint(full=False, best=True)
if self.use_tensorboardX and self.local_rank == 0:
self.writer.close()
def evaluate(self, loader, name=None):
self.use_tensorboardX, use_tensorboardX = False, self.use_tensorboardX
self.evaluate_one_epoch(loader, name)
self.use_tensorboardX = use_tensorboardX
def test(self, loader, save_path=None, name=None, write_image=False):
if save_path is None:
save_path = os.path.join(self.workspace, 'results')
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
os.makedirs(save_path, exist_ok=True)
self.log(f"==> Start Test, save results to {save_path}")
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.model.eval()
all_preds = []
with torch.no_grad():
for i, data in enumerate(loader):
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth = self.test_step(data)
path = os.path.join(save_path, f'{name}_{i:04d}_rgb.png')
path_depth = os.path.join(save_path, f'{name}_{i:04d}_depth.png')
#self.log(f"[INFO] saving test image to {path}")
if self.opt.color_space == 'linear':
preds = linear_to_srgb(preds)
pred = preds[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
pred_depth = preds_depth[0].detach().cpu().numpy()
pred_depth = (pred_depth * 255).astype(np.uint8)
if write_image:
imageio.imwrite(path, pred)
imageio.imwrite(path_depth, pred_depth)
all_preds.append(pred)
pbar.update(loader.batch_size)
# write video
all_preds = np.stack(all_preds, axis=0)
imageio.mimwrite(os.path.join(save_path, f'{name}.mp4'), all_preds, fps=25, quality=8, macro_block_size=1)
self.log(f"==> Finished Test.")
# [GUI] just train for 16 steps, without any other overhead that may slow down rendering.
def train_gui(self, train_loader, step=16):
self.model.train()
total_loss = torch.tensor([0], dtype=torch.float32, device=self.device)
loader = iter(train_loader)
# mark untrained grid
if self.global_step == 0:
self.model.mark_untrained_grid(train_loader._data.poses, train_loader._data.intrinsics)
for _ in range(step):
# mimic an infinite loop dataloader (in case the total dataset is smaller than step)
try:
data = next(loader)
except StopIteration:
loader = iter(train_loader)
data = next(loader)
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, truths, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
total_loss += loss.detach()
if self.ema is not None and self.global_step % self.ema_update_interval == 0:
self.ema.update()
average_loss = total_loss.item() / step
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
outputs = {
'loss': average_loss,
'lr': self.optimizer.param_groups[0]['lr'],
}
return outputs
# [GUI] test on a single image
def test_gui(self, pose, intrinsics, W, H, auds, eye=None, index=0, bg_color=None, spp=1, downscale=1):
# render resolution (may need downscale to for better frame rate)
rH = int(H * downscale)
rW = int(W * downscale)
intrinsics = intrinsics * downscale
if auds is not None:
auds = auds.to(self.device)
pose = torch.from_numpy(pose).unsqueeze(0).to(self.device)
rays = get_rays(pose, intrinsics, rH, rW, -1)
bg_coords = get_bg_coords(rH, rW, self.device)
if eye is not None:
eye = torch.FloatTensor([eye]).view(1, 1).to(self.device)
data = {
'rays_o': rays['rays_o'],
'rays_d': rays['rays_d'],
'H': rH,
'W': rW,
'auds': auds,
'index': [index], # support choosing index for individual codes
'eye': eye,
'poses': pose,
'bg_coords': bg_coords,
}
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=self.fp16):
# here spp is used as perturb random seed!
# face: do not perturb for the first spp, else lead to scatters.
preds, preds_depth = self.test_step(data, bg_color=bg_color, perturb=False if spp == 1 else spp)
if self.ema is not None:
self.ema.restore()
# interpolation to the original resolution
if downscale != 1:
# TODO: have to permute twice with torch...
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous()
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)
if self.opt.color_space == 'linear':
preds = linear_to_srgb(preds)
pred = preds[0].detach().cpu().numpy()
pred_depth = preds_depth[0].detach().cpu().numpy()
outputs = {
'image': pred,
'depth': pred_depth,
}
return outputs
# [GUI] test with provided data
def test_gui_with_data(self, data, W, H):
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=self.fp16):
# here spp is used as perturb random seed!
# face: do not perturb for the first spp, else lead to scatters.
preds, preds_depth = self.test_step(data, perturb=False)
if self.ema is not None:
self.ema.restore()
if self.opt.color_space == 'linear':
preds = linear_to_srgb(preds)
# the H/W in data may be differnt to GUI, so we still need to resize...
preds = F.interpolate(preds.permute(0, 3, 1, 2), size=(H, W), mode='bilinear').permute(0, 2, 3, 1).contiguous()
preds_depth = F.interpolate(preds_depth.unsqueeze(1), size=(H, W), mode='nearest').squeeze(1)
pred = preds[0].detach().cpu().numpy()
pred_depth = preds_depth[0].detach().cpu().numpy()
outputs = {
'image': pred,
'depth': pred_depth,
}
return outputs
def train_one_epoch(self, loader):
self.log(f"==> Start Training Epoch {self.epoch}, lr={self.optimizer.param_groups[0]['lr']:.6f} ...")
total_loss = 0
if self.local_rank == 0 and self.report_metric_at_train:
for metric in self.metrics:
metric.clear()
self.model.train()
# distributedSampler: must call set_epoch() to shuffle indices across multiple epochs
# ref: https://pytorch.org/docs/stable/data.html
if self.world_size > 1:
loader.sampler.set_epoch(self.epoch)
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, mininterval=1, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
self.local_step = 0
for data in loader:
# update grid every 16 steps
if self.model.cuda_ray and self.global_step % self.opt.update_extra_interval == 0:
with torch.cuda.amp.autocast(enabled=self.fp16):
self.model.update_extra_state()
self.local_step += 1
self.global_step += 1
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, truths, loss = self.train_step(data)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.scheduler_update_every_step:
self.lr_scheduler.step()
loss_val = loss.item()
total_loss += loss_val
if self.ema is not None and self.global_step % self.ema_update_interval == 0:
self.ema.update()
if self.local_rank == 0:
if self.report_metric_at_train:
for metric in self.metrics:
metric.update(preds, truths)
if self.use_tensorboardX:
self.writer.add_scalar("train/loss", loss_val, self.global_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]['lr'], self.global_step)
if self.scheduler_update_every_step:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f}), lr={self.optimizer.param_groups[0]['lr']:.6f}")
else:
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
average_loss = total_loss / self.local_step
self.stats["loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if self.report_metric_at_train:
for metric in self.metrics:
self.log(metric.report(), style="red")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="train")
metric.clear()
if not self.scheduler_update_every_step:
if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
self.lr_scheduler.step(average_loss)
else:
self.lr_scheduler.step()
self.log(f"==> Finished Epoch {self.epoch}.")
def evaluate_one_epoch(self, loader, name=None):
self.log(f"++> Evaluate at epoch {self.epoch} ...")
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
total_loss = 0
if self.local_rank == 0:
for metric in self.metrics:
metric.clear()
self.model.eval()
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
if self.local_rank == 0:
pbar = tqdm.tqdm(total=len(loader) * loader.batch_size, bar_format='{desc}: {percentage:3.0f}% {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]')
with torch.no_grad():
self.local_step = 0
for data in loader:
self.local_step += 1
with torch.cuda.amp.autocast(enabled=self.fp16):
preds, preds_depth, pred_ambient_aud, pred_ambient_eye, pred_uncertainty, truths, loss, loss_raw = self.eval_step(data)
loss_val = loss.item()
total_loss += loss_val
# only rank = 0 will perform evaluation.
if self.local_rank == 0:
for metric in self.metrics:
metric.update(preds, truths)
# save image
save_path = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_rgb.png')
save_path_depth = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_depth.png')
# save_path_error = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_errormap.png')
save_path_ambient_aud = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_aud.png')
save_path_ambient_eye = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_eye.png')
save_path_uncertainty = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_uncertainty.png')
#save_path_gt = os.path.join(self.workspace, 'validation', f'{name}_{self.local_step:04d}_gt.png')
#self.log(f"==> Saving validation image to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
if self.opt.color_space == 'linear':
preds = linear_to_srgb(preds)
pred = preds[0].detach().cpu().numpy()
pred_depth = preds_depth[0].detach().cpu().numpy()
# loss_raw = loss_raw[0].mean(-1).detach().cpu().numpy()
# loss_raw = (loss_raw - np.min(loss_raw)) / (np.max(loss_raw) - np.min(loss_raw))
pred_ambient_aud = pred_ambient_aud[0].detach().cpu().numpy()
pred_ambient_aud /= np.max(pred_ambient_aud)
pred_ambient_eye = pred_ambient_eye[0].detach().cpu().numpy()
pred_ambient_eye /= np.max(pred_ambient_eye)
# pred_ambient = pred_ambient / 16
# print(pred_ambient.shape)
pred_uncertainty = pred_uncertainty[0].detach().cpu().numpy()
# pred_uncertainty = (pred_uncertainty - np.min(pred_uncertainty)) / (np.max(pred_uncertainty) - np.min(pred_uncertainty))
pred_uncertainty /= np.max(pred_uncertainty)
cv2.imwrite(save_path, cv2.cvtColor((pred * 255).astype(np.uint8), cv2.COLOR_RGB2BGR))
if not self.opt.torso:
cv2.imwrite(save_path_depth, (pred_depth * 255).astype(np.uint8))
# cv2.imwrite(save_path_error, (loss_raw * 255).astype(np.uint8))
cv2.imwrite(save_path_ambient_aud, (pred_ambient_aud * 255).astype(np.uint8))
cv2.imwrite(save_path_ambient_eye, (pred_ambient_eye * 255).astype(np.uint8))
cv2.imwrite(save_path_uncertainty, (pred_uncertainty * 255).astype(np.uint8))
#cv2.imwrite(save_path_gt, cv2.cvtColor((linear_to_srgb(truths[0].detach().cpu().numpy()) * 255).astype(np.uint8), cv2.COLOR_RGB2BGR))
pbar.set_description(f"loss={loss_val:.4f} ({total_loss/self.local_step:.4f})")
pbar.update(loader.batch_size)
average_loss = total_loss / self.local_step
self.stats["valid_loss"].append(average_loss)
if self.local_rank == 0:
pbar.close()
if not self.use_loss_as_metric and len(self.metrics) > 0:
result = self.metrics[0].measure()
self.stats["results"].append(result if self.best_mode == 'min' else - result) # if max mode, use -result
else:
self.stats["results"].append(average_loss) # if no metric, choose best by min loss
for metric in self.metrics:
self.log(metric.report(), style="blue")
if self.use_tensorboardX:
metric.write(self.writer, self.epoch, prefix="evaluate")
metric.clear()
if self.ema is not None:
self.ema.restore()
self.log(f"++> Evaluate epoch {self.epoch} Finished.")
def save_checkpoint(self, name=None, full=False, best=False, remove_old=True):
if name is None:
name = f'{self.name}_ep{self.epoch:04d}'
state = {
'epoch': self.epoch,
'global_step': self.global_step,
'stats': self.stats,
}
state['mean_count'] = self.model.mean_count
state['mean_density'] = self.model.mean_density
state['mean_density_torso'] = self.model.mean_density_torso
if full:
state['optimizer'] = self.optimizer.state_dict()
state['lr_scheduler'] = self.lr_scheduler.state_dict()
state['scaler'] = self.scaler.state_dict()
if self.ema is not None:
state['ema'] = self.ema.state_dict()
if not best:
state['model'] = self.model.state_dict()
file_path = f"{self.ckpt_path}/{name}.pth"
if remove_old:
self.stats["checkpoints"].append(file_path)
if len(self.stats["checkpoints"]) > self.max_keep_ckpt:
old_ckpt = self.stats["checkpoints"].pop(0)
if os.path.exists(old_ckpt):
os.remove(old_ckpt)
torch.save(state, file_path)
else:
if len(self.stats["results"]) > 0:
# always save new as best... (since metric cannot really reflect performance...)
if True:
# save ema results
if self.ema is not None:
self.ema.store()
self.ema.copy_to()
state['model'] = self.model.state_dict()
# we don't consider continued training from the best ckpt, so we discard the unneeded density_grid to save some storage (especially important for dnerf)
if 'density_grid' in state['model']:
del state['model']['density_grid']
if self.ema is not None:
self.ema.restore()
torch.save(state, self.best_path)
else:
self.log(f"[WARN] no evaluated results found, skip saving best checkpoint.")
def load_checkpoint(self, checkpoint=None, model_only=False):
if checkpoint is None:
checkpoint_list = sorted(glob.glob(f'{self.ckpt_path}/{self.name}_ep*.pth'))
if checkpoint_list:
checkpoint = checkpoint_list[-1]
self.log(f"[INFO] Latest checkpoint is {checkpoint}")
else:
self.log("[WARN] No checkpoint found, model randomly initialized.")
return
checkpoint_dict = torch.load(checkpoint, map_location=self.device)
if 'model' not in checkpoint_dict:
self.model.load_state_dict(checkpoint_dict)
self.log("[INFO] loaded bare model.")
return
missing_keys, unexpected_keys = self.model.load_state_dict(checkpoint_dict['model'], strict=False)
self.log("[INFO] loaded model.")
if len(missing_keys) > 0:
self.log(f"[WARN] missing keys: {missing_keys}")
if len(unexpected_keys) > 0:
self.log(f"[WARN] unexpected keys: {unexpected_keys}")
if self.ema is not None and 'ema' in checkpoint_dict:
self.ema.load_state_dict(checkpoint_dict['ema'])
if 'mean_count' in checkpoint_dict:
self.model.mean_count = checkpoint_dict['mean_count']
if 'mean_density' in checkpoint_dict:
self.model.mean_density = checkpoint_dict['mean_density']
if 'mean_density_torso' in checkpoint_dict:
self.model.mean_density_torso = checkpoint_dict['mean_density_torso']
if model_only:
return
self.stats = checkpoint_dict['stats']
self.epoch = checkpoint_dict['epoch']
self.global_step = checkpoint_dict['global_step']
self.log(f"[INFO] load at epoch {self.epoch}, global step {self.global_step}")
if self.optimizer and 'optimizer' in checkpoint_dict:
try:
self.optimizer.load_state_dict(checkpoint_dict['optimizer'])
self.log("[INFO] loaded optimizer.")
except:
self.log("[WARN] Failed to load optimizer.")
if self.lr_scheduler and 'lr_scheduler' in checkpoint_dict:
try:
self.lr_scheduler.load_state_dict(checkpoint_dict['lr_scheduler'])
self.log("[INFO] loaded scheduler.")
except:
self.log("[WARN] Failed to load scheduler.")
if self.scaler and 'scaler' in checkpoint_dict:
try:
self.scaler.load_state_dict(checkpoint_dict['scaler'])
self.log("[INFO] loaded scaler.")
except:
self.log("[WARN] Failed to load scaler.")